Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands.

The geometric and electronic structure of a doubly oxidized bimetallic Co complex containing two redox-active salen moieties connected via a 1,2-phenylene linker was investigated and compared to an oxidized monomeric analogue. Both complexes, namely, CoL(1) and Co2L(2), are oxidized to the mono- and dications, respectively, with AgSbF6 and characterized by X-ray crystallography for the monomer and by vis-NIR (NIR = near-infrared) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and density functional theory (DFT) calculations for both the monomer and dimer. Both complexes exhibit a water molecule coordinated in the apical position upon oxidation. [CoL(1)-H2O](+) displays a broad NIR band at 8500 cm(-1) (8400 M(-1) cm(-1)), which is consistent with recent reports on oxidized Co salen complexes (Kochem, A. et al., Inorg. Chem., 2012, 51, 10557-10571 and Kurahashi, T. et al., Inorg. Chem., 2013, 52, 3908-3919). DFT calculations predict a triplet ground state with significant ligand and metal contributions to the singularly occupied molecular orbitals. The majority (∼75%) of the total spin density is localized on the metal, highlighting both high-spin Co(III) and Co(II)L(•) character in the electronic ground state. Further oxidation of CoL(1) to the dication affords a low-spin Co(III) phenoxyl radical species. The NIR features for [Co2L(2)-2H2O](2+) at 8600 cm(-1) (17 800 M(-1) cm(-1)) are doubly intense in comparison to [CoL(1)-H2O](+) owing to the description of [Co2L(2)-2H2O](2+) as two non-interacting oxidized Co salen complexes bound via the central phenylene linker. Interestingly, TD-DFT calculations predict two electronic transitions that are 353 cm(-1) apart. The NIR spectrum of the analogous Ni complex, [Ni2L(2)](2+), exhibits two intense transitions (4890 cm(-1)/26 500 M(-1) cm(-1) and 4200 cm(-1)/21 200 M(-1) cm(-1)) due to exciton coupling in the excited state. Only one broad band is observed in the NIR spectrum for [Co2L(2)-2H2O](2+) as a result of the contracted donor and acceptor orbitals and overall CT character.

[1]  B. Sarkar,et al.  Functional metal complexes based on bridging “imino”-quinonoid ligands , 2015 .

[2]  F. Thomas,et al.  Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes. , 2015, Inorganic chemistry.

[3]  S. K. Barman,et al.  Palladium(II) Complex of a Redox-Active Amidophenolate-Based O,N,S,N Ligand: Its Monocation and Dication and Reactivity with PPh3. , 2015, Inorganic chemistry.

[4]  S. Latil,et al.  Tailoring the structure of two-dimensional self-assembled nanoarchitectures based on ni(ii) -salen building blocks. , 2014, Chemistry.

[5]  Seth N. Brown,et al.  Metal and ligand effects on bonding in group 6 complexes of redox-active amidodiphenoxides. , 2014, Inorganic chemistry.

[6]  E. P. Talsi,et al.  Active sites and mechanisms of bioinspired oxidation with H2O2, catalyzed by non-heme Fe and related Mn complexes , 2014 .

[7]  J. van Slageren,et al.  (Electro)catalytic C-C bond formation reaction with a redox-active cobalt complex. , 2014, Chemical communications.

[8]  C. Philouze,et al.  Detailed Geometric and Electronic Structures of a One-Electron-Oxidized Ni Salophen Complex and Its Amido Derivatives , 2014 .

[9]  Seth N. Brown,et al.  Octahedral to trigonal prismatic distortion driven by subjacent orbital π antibonding interactions and modulated by ligand redox noninnocence. , 2014, Chemical communications.

[10]  T. Storr,et al.  The chemistry and applications of multimetallic salen complexes. , 2014, Dalton transactions.

[11]  F. Thomas,et al.  Fe(III) bipyrrolidine phenoxide complexes and their oxidized analogues. , 2014, Inorganic chemistry.

[12]  T. Storr,et al.  Tuning ligand electronics and peripheral substitution on cobalt salen complexes: structure and polymerisation activity. , 2014, Dalton transactions.

[13]  J. Groves Enzymatic C-H bond activation: Using push to get pull. , 2014, Nature chemistry.

[14]  Mei Wang,et al.  Molecular and electronic structures of six-coordinate "low-valent" [M((Me)bpy)3]0 (M = Ti, V, Cr, Mo) and [M(tpy)2]0 (M = Ti, V, Cr), and seven-coordinate [MoF((Me)bpy)3](PF6) and [MX(tpy)2](PF6) (M = Mo, X = Cl and M = W, X = F). , 2013, Inorganic chemistry.

[15]  Xiaoping Yang,et al.  Anion dependent self-assembly of a linear hexanuclear Yb(III) salen complex with enhanced near-infrared (NIR) luminescence properties. , 2013, Chemical communications.

[16]  K. Ueno,et al.  Titanium and manganese complexes supported by a xanthene-bridged bis(tripodal N2O2) ligand: isomerization, intramolecular hydrogen bonding and metal-binding ability. , 2013, Dalton transactions.

[17]  Michael J. Katz,et al.  Class III delocalization and exciton coupling in a bimetallic bis-ligand radical complex. , 2013, Chemistry.

[18]  Michael C. W. Chan,et al.  Shape-persistent (Pt-salphen)2 phosphorescent coordination frameworks: structural insights and selective perturbations. , 2013, Chemistry.

[19]  S. Yiu,et al.  Crowded bis-(M-salphen) [M = Pt(II), Zn(II)] coordination architectures: luminescent properties and ion-selective responses. , 2013, Inorganic chemistry.

[20]  H. Fujii,et al.  Unique ligand-radical character of an activated cobalt salen catalyst that is generated by aerobic oxidation of a cobalt(II) salen complex. , 2013, Inorganic chemistry.

[21]  Dongho Kim,et al.  Homoconjugation in diporphyrins: excitonic behaviors in singly and doubly linked Zn(II)porphyrin dimers , 2013 .

[22]  R. Crabtree,et al.  Redox-active ligands in catalysis. , 2013, Chemical Society reviews.

[23]  C. T. Lyons,et al.  Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models. , 2013, Coordination chemistry reviews.

[24]  P. Wagner,et al.  7. Bioinspired Catalysis , 2012 .

[25]  P. Afanasiev,et al.  An N-bridged high-valent diiron-oxo species on a porphyrin platform that can oxidize methane. , 2012, Nature chemistry.

[26]  M. Orio,et al.  Reversible double oxidation and protonation of the non-innocent bridge in a nickel(II) salophen complex. , 2012, Inorganic chemistry.

[27]  F. Thomas,et al.  New insights into the electronic structure and reactivity of one-electron oxidized copper(II)-(disalicylidene)diamine complexes. , 2012, Inorganic chemistry.

[28]  M. Orio,et al.  Radical localization in a series of symmetric Ni(II) complexes with oxidized salen ligands. , 2012, Chemistry.

[29]  V. Praneeth,et al.  Redox-active ligands in catalysis. , 2012, Angewandte Chemie.

[30]  M. Orio,et al.  Ligand contributions to the electronic structures of the oxidized cobalt(II) salen complexes. , 2012, Inorganic chemistry.

[31]  W. Kaim,et al.  Metal(IV) Complexes [M(LN,O,S)2]n (M = Ru, Os) of a Redox‐Active o‐Amidophenolate Ligand (LN,O,S)2– with Coordinating Thioether Appendix , 2012 .

[32]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[33]  Nicholas J. Seewald,et al.  Nonclassical oxygen atom transfer reactions of oxomolybdenum(VI) bis(catecholate). , 2012, Chemical communications.

[34]  Michael I Webb,et al.  Non-innocent ligand behaviour of a bimetallic Cu complex employing a bridging catecholate. , 2012, Dalton transactions.

[35]  C. T. Lyons,et al.  Electrochemical and spectroscopic effects of mixed substituents in bis(phenolate)-copper(II) galactose oxidase model complexes. , 2012, Journal of the American Chemical Society.

[36]  H. Houjou,et al.  Facile preparation of a fully π-conjugated metallopolymer composed of fused salphen complexes. , 2012, Macromolecular rapid communications.

[37]  T. Agapie,et al.  Dinickel Bisphenoxyiminato Complexes for the Polymerization of Ethylene and α-Olefins. , 2012, Organometallics.

[38]  K. Wieghardt,et al.  Electronic structures of the [V(tbpy)3]z (z = 3+, 2+, 0, 1-) electron transfer series. , 2012, Inorganic chemistry.

[39]  T. Agapie,et al.  Bimetallic effects on ethylene polymerization in the presence of amines: inhibition of the deactivation by Lewis bases. , 2012, Journal of the American Chemical Society.

[40]  M. Orio,et al.  One-electron oxidized copper(II) salophen complexes: phenoxyl versus diiminobenzene radical species. , 2012, Chemistry.

[41]  Seth N. Brown,et al.  Molybdenum(VI) complexes of a 2,2'-biphenyl-bridged bis(amidophenoxide): competition between metal-ligand and metal-amidophenoxide π bonding. , 2012, Inorganic chemistry.

[42]  H. Hashimoto,et al.  Anion-controlled assembly of four manganese ions: structural, magnetic, and electrochemical properties of tetramanganese complexes stabilized by xanthene-bridged Schiff base ligands. , 2012, Inorganic chemistry.

[43]  J. Love,et al.  Double-pillared cobalt Pacman complexes: synthesis, structures and oxygen reduction catalysis. , 2012, Dalton transactions.

[44]  Arjan W. Kleij,et al.  Recent advances with π-conjugated salen systems. , 2012, Chemical Society reviews.

[45]  K. Wieghardt,et al.  Electronic and molecular structures of the members of the electron transfer series [Cr(tbpy)3]n (n = 3+, 2+, 1+, 0): an X-ray absorption spectroscopic and density functional theoretical study. , 2011, Inorganic chemistry.

[46]  George M. Sheldrick,et al.  ShelXle: a Qt graphical user interface for SHELXL , 2011, Journal of applied crystallography.

[47]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[48]  T. Storr,et al.  Sulfanyl stabilization of copper-bonded phenoxyls in model complexes and galactose oxidase , 2011, Proceedings of the National Academy of Sciences.

[49]  R. Lavi,et al.  Phenolate and phenoxyl radical complexes of Cu(II) and Co(III), bearing a new redox active N,O-phenol-pyrazole ligand. , 2011, Dalton transactions.

[50]  S. Mobin,et al.  Bis(acetylacetonato)ruthenium complexes of noninnocent 1,2-dioxolene ligands: qualitatively different bonding in relation to monoimino and diimino analogues. , 2011, Chemistry.

[51]  P. Chirik Preface: Forum on redox-active ligands. , 2011, Inorganic chemistry.

[52]  T. Storr,et al.  Non-innocent ligand behavior of a bimetallic Ni Schiff-base complex containing a bridging catecholate. , 2011, Inorganic chemistry.

[53]  K. Araki,et al.  Comparison of the spectroscopic properties of π-conjugated, fused salphen triads embedded with Zn-homo-, Ni-homo-, and Ni/Zn-heteronuclei. , 2011, Inorganic chemistry.

[54]  H. Fujii,et al.  One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals. , 2011, Journal of the American Chemical Society.

[55]  J. Reek,et al.  Ligands that store and release electrons during catalysis. , 2011, Angewandte Chemie.

[56]  K. Wieghardt,et al.  Dithiolene Radicals: Sulfur K-Edge X-Ray Absorption Spectroscopy and Harry's Intuition , 2011 .

[57]  F. Tani,et al.  Influence of the chelate effect on the electronic structure of one-electron oxidized group 10 metal(II)-(disalicylidene)diamine complexes. , 2011, Dalton transactions.

[58]  S. DeBeer,et al.  Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms. , 2011, Inorganic chemistry.

[59]  M. Head‐Gordon,et al.  Intermediate-valence tautomerism in decamethylytterbocene complexes of methyl-substituted bipyridines. , 2010, Journal of the American Chemical Society.

[60]  Michael T. Green,et al.  Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics , 2010, Science.

[61]  K. Wieghardt,et al.  The molecular and electronic structures of monomeric cobalt complexes containing redox noninnocent o -aminobenzenethiolate ligands , 2010 .

[62]  C. Philouze,et al.  CoIII and CuII complexes of reduced Schiff bases: Generation of phenoxyl radical species , 2010 .

[63]  K. Hardcastle,et al.  Redox-active ligand-mediated oxidative addition and reductive elimination at square planar cobalt(III): multielectron reactions for cross-coupling. , 2010, Journal of the American Chemical Society.

[64]  A. Kieboom Purification of Laboratory Chemicals, 3rd edition. D.D. Perrin and W. L. F. Armarego. Pergamon Press, Oxford, 1988, X + 392 pp. ISBN 0-08-034714-2, Flexicover, Price £37.50. ISBN 0-08-034715-0, Hardcover, Price £75.00 , 2010 .

[65]  M. Orio,et al.  X-ray structures of copper(II) and nickel(II) radical salen complexes: the preference of galactose oxidase for copper(II). , 2010, Angewandte Chemie.

[66]  P. Deplano,et al.  Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores: Structure/property relationship , 2010 .

[67]  A. Vlček Dithiolenes and non-innocent redox-active ligands , 2010 .

[68]  M. Fourmigué,et al.  Radical CpNi(dithiolene) and CpNi(diselenolene) complexes: Synthetic routes and molecular properties , 2010 .

[69]  Seth N. Brown,et al.  Redox-active tripodal aminetris(aryloxide) complexes of titanium(IV). , 2010, Inorganic chemistry.

[70]  Arjan W. Kleij,et al.  Cooperative multimetallic catalysis using metallosalens. , 2010, Chemical communications.

[71]  S. Ogo Bioinspired catalysis. , 2010, Dalton transactions.

[72]  S. Matsunaga,et al.  Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction. , 2010, Journal of the American Chemical Society.

[73]  Karl Wieghardt,et al.  Radical Ligands Confer Nobility on Base-Metal Catalysts , 2010, Science.

[74]  I. Fallis,et al.  Formation of a cobalt(III)-phenoxyl radical complex by acetic acid promoted aerobic oxidation of a Co(II)salen complex. , 2010, Inorganic chemistry.

[75]  A. Slawin,et al.  Tailoring dicobalt Pacman complexes of Schiff-base calixpyrroles towards dioxygen reduction catalysis. , 2010, Chemical communications.

[76]  K. Hardcastle,et al.  Redox-active ligand-mediated Co-Cl bond-forming reactions at reducing square planar cobalt(III) centers , 2010 .

[77]  S. Matsunaga,et al.  Catalytic asymmetric synthesis of 3-aminooxindoles: enantiofacial selectivity switch in bimetallic vs monometallic Schiff base catalysis. , 2010, Journal of the American Chemical Society.

[78]  K. Ueno,et al.  Synthesis and characterization of xanthene-bridged Schiff-base dimanganese(III) complexes: bimetallic catalysts for asymmetric oxidation of sulfides. , 2010, Dalton transactions.

[79]  S. Mecking,et al.  Ethylene polymerization in supercritical carbon dioxide with binuclear nickel(II) catalysts. , 2009, Dalton transactions.

[80]  Wah-Leung Tong,et al.  Axially rotating (Pt-salphen)2 phosphorescent coordination frameworks. , 2009, Chemical communications.

[81]  T. Storr,et al.  Detailed evaluation of the geometric and electronic structures of one-electron oxidized group 10 (Ni, Pd, and Pt) metal(II)-(disalicylidene)diamine complexes. , 2009, Inorganic chemistry.

[82]  A. J. Blake,et al.  Binuclear cobalt complexes of Schiff-base calixpyrroles and their roles in the catalytic reduction of dioxygen. , 2009, Inorganic chemistry.

[83]  M. Kanai,et al.  Recent progress in asymmetric bifunctional catalysis using multimetallic systems. , 2009, Accounts of chemical research.

[84]  M. Kaupp,et al.  Jacobsen's catalyst for hydrolytic kinetic resolution: structure elucidation of paramagnetic Co(III) salen complexes in solution via combined NMR and quantum chemical studies. , 2009, Journal of the American Chemical Society.

[85]  C. Philouze,et al.  One-electron oxidized nickel(II) complexes of bis and tetra(salicylidene) phenylenediamine Schiff bases: from monoradical to interacting Ni(III) ions. , 2009, Dalton transactions.

[86]  A. Borovik,et al.  Lessons from nature: unraveling biological CH bond activation. , 2009, Current opinion in chemical biology.

[87]  A. Poddel’sky,et al.  Transition metal complexes with bulky 4,6-di-tert-butyl-N-aryl(alkyl)-o-iminobenzoquinonato ligands: Structure, EPR and magnetism , 2009 .

[88]  R. Fröhlich,et al.  Exchange interactions and zero-field splittings in C3-symmetric Mn(III)6Fe(III): using molecular recognition for the construction of a series of high spin complexes based on the triplesalen ligand. , 2009, Inorganic chemistry.

[89]  T. Storr,et al.  Defining the electronic and geometric structure of one-electron oxidized copper-bis-phenoxide complexes. , 2008, Journal of the American Chemical Society.

[90]  K. Abboud,et al.  Self-assembled dinuclear cobalt(II)-salen catalyst through hydrogen-bonding and its application to enantioselective nitro-aldol (Henry) reaction. , 2008, Journal of the American Chemical Society.

[91]  I. Fallis,et al.  The electronic structure of N,N′-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexane-diamino cobalt(II) , 2008 .

[92]  W. Tolman,et al.  Biologically inspired oxidation catalysis , 2008, Nature.

[93]  Brandon A. Rodriguez,et al.  Neutral bimetallic nickel(II) phenoxyiminato catalysts for highly branched polyethylenes and ethylene-norbornene copolymerizations , 2008 .

[94]  J. Sundermeyer,et al.  A series of metal complexes with the non-innocent N,N'-bis(pentafluorophenyl)-o-phenylenediamido ligand: twisted geometry for tuning the electronic structure. , 2008, Dalton transactions.

[95]  E. Jacobsen,et al.  Dinuclear {(salen)Al} complexes display expanded scope in the conjugate cyanation of alpha,beta-unsaturated imides. , 2008, Angewandte Chemie.

[96]  S. Grimme,et al.  Trinuclear copper complexes with triplesalen ligands: geometric and electronic effects on ferromagnetic coupling via the spin-polarization mechanism. , 2007, Chemistry.

[97]  M. White,et al.  A Predictably Selective Aliphatic C–H Oxidation Reaction for Complex Molecule Synthesis , 2007, Science.

[98]  W. Nam Dioxygen Activation by Metalloenzymes and Models , 2007 .

[99]  T. Storr,et al.  The Geometric and Electronic Structure of a One-Electron-Oxidized Nickel(II) Bis(salicylidene)diamine Complex† , 2007 .

[100]  D. Nocera,et al.  Role of proton-coupled electron transfer in O-O bond activation. , 2007, Accounts of chemical research.

[101]  F. Tani,et al.  Formation and characterization of Co(III)-semiquinonate phenoxyl radical species. , 2007, Inorganic chemistry.

[102]  D. Darensbourg,et al.  Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. , 2007, Chemical reviews.

[103]  F. Neese,et al.  Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands. , 2007, Dalton transactions.

[104]  C. Philouze,et al.  Up to four phenoxyl radicals coordinated to two metal ions in copper and zinc complexes? , 2007, Dalton transactions.

[105]  A. J. Blake,et al.  Dioxygen reduction at dicobalt complexes of a Schiff base calixpyrrole ligand. , 2007, Angewandte Chemie.

[106]  Qihui Chen,et al.  Arene-Bridged Salicylaldimine-Based Binuclear Neutral Nickel(II) Complexes: Synthesis and Ethylene Polymerization Activities , 2007 .

[107]  C. Philouze,et al.  Galactose Oxidase models: 19F NMR as a powerful tool to study the solution chemistry of tripodal ligands in the presence of copper(II). , 2006, Chemical communications.

[108]  H. García,et al.  Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. , 2006, Chemical reviews.

[109]  P. Müller,et al.  Property-oriented rational design of single-molecule magnets: a C3-symmetric Mn6Cr complex based on three molecular building blocks with a spin ground state of St=21/2. , 2006, Angewandte Chemie.

[110]  C. Philouze,et al.  Valence tautomerism in octahedral and square-planar phenoxyl-nickel(II) complexes: are imino nitrogen atoms good friends? , 2006, Chemistry.

[111]  Abhishek Dey,et al.  Metal–thiolate bonds in bioinorganic chemistry , 2006, J. Comput. Chem..

[112]  C. Philouze,et al.  Fine tuning of the oxidation locus, and electron transfer, in nickel complexes of pro-radical ligands. , 2006, Chemistry.

[113]  D. Joe,et al.  Ethylene/Polar Norbornene Copolymerizations by Bimetallic Salicylaldimine−Nickel Catalysts , 2005 .

[114]  R. Fröhlich,et al.  Trinuclear nickel complexes with triplesalen ligands: simultaneous occurrence of mixed valence and valence tautomerism in the oxidized species. , 2005, Inorganic chemistry.

[115]  K. Ueno,et al.  Synthesis of a Cofacial Schiff-Base Dimanganese(III) Complex for Asymmetric Catalytic Oxidation of Sulfides , 2005 .

[116]  Li-Ming Tang,et al.  Synthesis and Ethylene Polymerization Activity of a Novel, Highly Active Single-Component Binuclear Neutral Nickel(II) Catalyst , 2005 .

[117]  E. McGarrigle,et al.  Chromium- and manganese-salen promoted epoxidation of alkenes. , 2005, Chemical reviews.

[118]  M. Valko,et al.  Cobalt(II) Complexes with Substituted Salen‐Type Ligands and Their Dioxygen Affinity in N,N‐Dimethylformamide at Various Temperatures , 2005 .

[119]  F. Neese,et al.  The electronic structure of the isoelectronic, square-planar complexes [FeII(L)2]2- and [CoIII(L Bu)2]- (L2- and (L Bu)2-=benzene-1,2-dithiolates): an experimental and density functional theoretical study. , 2005, Journal of the American Chemical Society.

[120]  A. J. Blake,et al.  Phenolate and phenoxyl radical complexes of Co(II) and Co(III). , 2004, Dalton transactions.

[121]  A. Poddel’sky,et al.  New four- and five-coordinated complexes of cobalt with sterically hindered o-iminobenzoquinone ligands: synthesis and structure , 2004 .

[122]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[123]  Y. Murata,et al.  Generation of fullerenyl cation (EtO)2P+(OH)CH2-C60+ from RC60-H and from RC60-C60R (R = CH2P(O)(OEt)2). , 2004, Journal of the American Chemical Society.

[124]  L. Que,et al.  Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. , 2004, Chemical reviews.

[125]  Richard I. Cooper,et al.  CRYSTALS version 12: software for guided crystal structure analysis , 2003 .

[126]  F. Tani,et al.  One-electron oxidized nickel(II)-(disalicylidene)diamine complex: temperature-dependent tautomerism between Ni(III)-phenolate and Ni(II)-phenoxyl radical states. , 2003, Journal of the American Chemical Society.

[127]  J. W. Whittaker,et al.  Free radical catalysis by galactose oxidase. , 2003, Chemical reviews.

[128]  F. Basuli,et al.  Structural systematics for o-C(6)H(4)XY ligands with X,Y= O, NH, and S donor atoms. o-iminoquinone and o-iminothioquinone complexes of ruthenium and osmium. , 2002, Inorganic chemistry.

[129]  F. Thomas,et al.  A structural and functional model of galactose oxidase: control of the one-electron oxidized active form through two differentiated phenolic arms in a tripodal ligand. , 2002, Angewandte Chemie.

[130]  K. Wieghardt,et al.  Cobalt(II)/(III) Complexes Containingo-Iminothiobenzosemiquinonato(1−) ando-Iminobenzosemiquinonato(1−) π-Radical Ligands , 2002 .

[131]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[132]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[133]  C. Pierpont Unique properties of transition metal quinone complexes of the MQ3 series , 2001 .

[134]  K. Wieghardt,et al.  Phenylthiyl radical complexes of gallium(III), iron(III), and cobalt(III) and comparison with their phenoxyl analogues. , 2001, Journal of the American Chemical Society.

[135]  C. Pierpont Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands , 2001 .

[136]  E. Jacobsen,et al.  Asymmetric catalysis of epoxide ring-opening reactions. , 2000, Accounts of chemical research.

[137]  W. Tolman,et al.  Understanding the copper–phenoxyl radical array in galactose oxidase: contributions from synthetic modeling studies , 2000 .

[138]  J. Tomasi,et al.  The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level , 1999 .

[139]  G. Scuseria,et al.  An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules , 1998 .

[140]  E. Jacobsen,et al.  Cooperative Asymmetric Catalysis with Dimeric Salen Complexes , 1998 .

[141]  Jacopo Tomasi,et al.  Geometry optimization of molecular structures in solution by the polarizable continuum model , 1998, J. Comput. Chem..

[142]  K. Hodgson,et al.  Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity. , 1998, Science.

[143]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[144]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[145]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[146]  J. Hutchison,et al.  Molecular Catalysts for Multielectron Redox Reactions of Small Molecules: The “Cofacial Metallodiporphyrin” Approach , 1994 .

[147]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[148]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[149]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[150]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[151]  D. Neckers,et al.  Aggregation phenomena in xanthene dyes , 1989 .

[152]  C. Pierpont,et al.  Transition metal complexes of o-benzoquinone, o-semiquinone, and catecholate ligands , 1981 .

[153]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[154]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[155]  K. Bowers,et al.  Anomalous paramagnetism of copper acetate , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[156]  W. Kaim The Shrinking World of Innocent Ligands: Conventionaland Non‐Conventional Redox‐Active Ligands , 2012 .

[157]  F. Neese,et al.  Molecular and electronic structure of four- and five-coordinate cobalt complexes containing two o-phenylenediamine- or two o-aminophenol-type ligands at various oxidation levels: an experimental, density functional, and correlated ab initio study. , 2004, Chemistry.

[158]  K. Wieghardt,et al.  Phenoxyl radical complexes of chromium(III), manganese(III), cobalt(III), and nickel(II) , 2000 .

[159]  W. Pryor Cytochrome P450: Structure, mechanism, and biochemistry , 1996 .

[160]  David A. Case,et al.  Density-Functional Theory of Spin Polarization and Spin Coupling in Iron—Sulfur Clusters , 1992 .

[161]  A. V. Zelewsky,et al.  The electronic structure of cobalt(II) complexes with schiff bases and related ligands , 1979 .

[162]  D. F. Evans,et al.  Organometallic compounds of bivalent europium, ytterbium, and samarium , 1971 .

[163]  D. D. Perrin,et al.  Purification of Laboratory Chemicals , 2022 .

[164]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[165]  D. F. Evans 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance , 1959 .