Dembowski-Ostrom polynomials from Dickson polynomials

Motivated by several recent results, we determine precisely when F"k(X^d,a)-F"k(0,a) is a Dembowski-Ostrom polynomial, where F"k(X,a) is a Dickson polynomial of the first or second kind. As a consequence, we obtain a classification of all such polynomials which are also planar; all examples found are equivalent to previously known examples.

[1]  M. Henderson A note on the permutation behaviour of the Dickson polynomials of the second kind , 1997, Bulletin of the Australian Mathematical Society.

[2]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[3]  Cunsheng Ding,et al.  A family of skew Hadamard difference sets , 2006, J. Comb. Theory, Ser. A.

[4]  Robert S. Coulter,et al.  Commutative presemifields and semifields , 2008 .

[5]  Robert S. Coulter,et al.  On the Permutation Behaviour of Dickson Polynomials of the Second Kind , 2002 .

[6]  D. Knuth Finite semifields and projective planes , 1965 .

[7]  Robert S. Coulter,et al.  Planar Functions and Planes of Lenz-Barlotti Class II , 1997, Des. Codes Cryptogr..

[8]  A. A. Albert,et al.  On nonassociative division algebras , 1952 .

[9]  W. Nöbauer Über eine Klasse von Permutationspolynomen und die dadurch dargestellten Gruppen. , 1968 .

[10]  Giampaolo Menichetti On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .

[11]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[12]  Marie Henderson,et al.  Dickson polynomials of the second kind which are permutation polynomials over a finite field , 1998 .

[13]  Marie Henderson,et al.  Permutation Properties of Chebyshev Polynomials of the Second Kind over a Finite Field , 1995 .

[14]  Qing Xiang,et al.  Pseudo-Paley graphs and skew Hadamard difference sets from presemifields , 2007, Des. Codes Cryptogr..