A pseudo-equilibrium finite element for limit analysis of Reissner-Mindlin plates

Abstract A new finite element is developed for the yield design of Reissner-Mindlin plates based on the static theorem of limit analysis. This three-node triangular element satisfies the equilibrium equations and the mechanical boundary conditions on average, and, as such, it is not expected lower bounds on the collapse load from the computed results. The yield criterion is, however, exactly satisfied throughout the element. The relatively small nonlinear convex optimization problem posed here is treated as second-order cone programming and solved with a primal-dual interior-point algorithm implemented in the MOSEK optimization package. The proposed procedure exhibits excellent performance on a series of numerical tests, demonstrating that not satisfying the equilibrium equations and the mechanical boundary conditions rigorously is far from being a handicap. It is also observed that the solution may develop boundary layer along certain types of edges. This real physical phenomenon, likely to be manifested in Reissner-Mindlin plate solutions and that nearly no attention has been paid in the framework of yield design, is a source of convergence delay.

[1]  On the plastic theory of plates , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Matthew Gilbert,et al.  Limit analysis of plates using the EFG method and second‐order cone programming , 2009 .

[3]  J. Reddy An introduction to the finite element method , 1989 .

[4]  M. Vicente da Silva,et al.  A finite element formulation of Mindlin plates for limit analysis , 2011 .

[5]  Wai-Fah Chen,et al.  Plasticity for Structural Engineers , 1988 .

[6]  Hung Nguyen-Xuan,et al.  Upper and lower bound limit analysis of plates using FEM and second-order cone programming , 2010 .

[7]  H. G. Hopkins,et al.  Load-carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition , 1955 .

[8]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[9]  R. Taylor,et al.  An analysis of inelastic Reissner-Mindlin plates , 1991 .

[10]  Wai-Fah Chen,et al.  Limit analysis in soil mechanics , 1990 .

[11]  T. Pian,et al.  Hybrid and Incompatible Finite Element Methods , 2005 .

[12]  Song Cen,et al.  Developments of Mindlin-Reissner Plate Elements , 2015 .

[13]  G. Saxcé,et al.  Plastic Limit Analysis of Plates, Shells and Disks , 2011 .

[14]  Adnan Ibrahimbegovic,et al.  An efficient implementation of stress resultant plasticity in analysis of Reissner‐Mindlin plates , 1993 .

[15]  Walter Schumann,et al.  On limit analysis of plates , 1958 .

[16]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[17]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[18]  D. Arnold,et al.  Edge effects in the Reissner-Mindlin plate theory , 1989 .

[19]  E. Lucena Neto,et al.  A Three-Node Triangular Finite Element for Static Limit Analysis , 2020 .

[20]  Jaime Peraire,et al.  Mesh adaptive computation of upper and lower bounds in limit analysis , 2008 .

[21]  E. H. Mansfield,et al.  Studies in collapse analysis of rigid-plastic plates with a square yield diagram , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  J. Bleyer,et al.  Locking‐free discontinuous finite elements for the upper bound yield design of thick plates , 2015 .

[23]  Antonio Capsoni,et al.  Limit analysis of plates-a finite element formulation , 1999 .

[24]  Trung Nguyen-Thoi,et al.  An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming , 2015, J. Comput. Appl. Math..

[25]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[26]  Edmund Christiansen,et al.  Computations in limit analysis for plastic plates , 1983 .

[27]  Patrick de Buhan,et al.  Lower bound static approach for the yield design of thick plates , 2014 .

[28]  E. Faccioli,et al.  A finite element, linear programming methods for the limit analysis of thin plates , 1973 .

[29]  Etienne Loute,et al.  Solving limit analysis problems: an interior‐point method , 2005 .

[30]  E. Hinton,et al.  Edge effects in Mindlin—Reissner plates using adaptive mesh refinement , 1990 .

[31]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[32]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[33]  Shahram Sarkani,et al.  On a boundary layer phenomenon in Mindlin-Reissner plate theory for laminated circular sector plates , 2001 .

[34]  A nonlinear elasto-plastic analysis of Reissner-Mindlin plates by finite element method , 2019, Frattura ed Integrità Strutturale.

[35]  E. L. Neto,et al.  Static Limit Analysis of Reinforced Soil Structures by a Simple Finite Element and Second-Order Cone Programming , 2017 .

[36]  Steen Krenk,et al.  Limit Analysis and Optimal Design of Plates with Equilibrium Elements , 1994 .

[37]  Hung Nguyen-Xuan,et al.  A polytree-based adaptive approach to limit analysis of cracked structures , 2017 .

[38]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[39]  M. Gilbert,et al.  Adaptive element-free Galerkin method applied to the limit analysis of plates , 2010 .

[40]  Michael L. Overton,et al.  An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Sci. Comput..

[41]  Ted Belytschko,et al.  Numerical Methods for the Limit Analysis of Plates , 1968 .

[42]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[43]  B. Häggblad,et al.  Specifications of boundary conditions for Reissner/Mindlin plate bending finite elements , 1990 .

[44]  J. Bleyer,et al.  On the performance of non‐conforming finite elements for the upper bound limit analysis of plates , 2013 .

[45]  David Johnson,et al.  Automated yield-line analysis of orthotropic slabs , 1996 .

[46]  E. Christiansen Limit analysis of collapse states , 1996 .

[47]  C. Le A stabilized discrete shear gap finite element for adaptive limit analysis of Mindlin–Reissner plates , 2013 .

[48]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[49]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[50]  Jeremy Bleyer,et al.  Automated formulation and resolution of limit analysis problems , 2020, Computers & Structures.

[51]  Gabriele Milani,et al.  A Reissner–Mindlin limit analysis model for out-of-plane loaded running bond masonry walls , 2007 .

[52]  E. Anderheggen,et al.  Finite element limit analysis using linear programming , 1972 .