The Nonlinear Mixed Effects Model with a Smooth Random Effects Density

The fixed parameters of the nonlinear mixed effects model and the density of the random effects are estimated jointly by maximum likelihood. The density of the random effects is assumed to be smooth but is otherwise unrestricted. The method uses a series expansion that follows from the smoothness assumption to represent the density and quadrature to compute the likelihood. Standard algorithms are used for optimization. Empirical Bayes estimates of random coefficients are obtained by computing posterior modes. The method is applied to data from pharmacokinetics, and properties of the method are investigated by application to simulated data. Key Words: Maximum likelihood; nonlinear mixed effects models; nonparametric; pharmacokinetics.

[1]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[2]  A Racine-Poon,et al.  A Bayesian approach to nonlinear random effects models. , 1985, Biometrics.

[3]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[4]  Brian J. Eastwood,et al.  Asymptotic normality and consistency of semi-nonparametric regression estimators using an upwards F test truncation rule , 1991 .

[5]  Lewis B. Sheiner,et al.  Heteroscedastic nonlinear regression , 1988 .

[6]  L B Sheiner,et al.  Estimating population kinetics. , 1982, Critical reviews in biomedical engineering.

[7]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[8]  E. Vonesh,et al.  Mixed-effects nonlinear regression for unbalanced repeated measures. , 1992, Biometrics.

[9]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[10]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[11]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[12]  T H Grasela,et al.  Neonatal population pharmacokinetics of phenobarbital derived from routine clinical data. , 1985, Developmental pharmacology and therapeutics.

[13]  Marie Davidian,et al.  Some Simple Methods for Estimating Intraindividual Variability in Nonlinear Mixed Effects Models , 1993 .

[14]  E. Hannan Rational Transfer Function Approximation , 1987 .

[15]  B. M. Potscher Model Selection Under Nonstationarity: Autoregressive Models and Stochastic Linear Regression Models , 1989 .

[16]  Peter E. Rossi,et al.  Stock Prices and Volume , 1992 .

[17]  Brian J. Eastwood,et al.  Adaptive Rules for Seminonparametric Estimators That Achieve Asymptotic Normality , 1991, Econometric Theory.

[18]  J F Boisvieux,et al.  Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effect model. , 1984, Drug metabolism reviews.

[19]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[20]  A. Ronald Gallant,et al.  On the asymptotic normality of Fourier flexible form estimates , 1991 .

[21]  A. Mallet A maximum likelihood estimation method for random coefficient regression models , 1986 .

[22]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[23]  P. Gill,et al.  User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear Programming. , 1983 .