Prediction of a solid desiccant dehydrator performance using least squares support vector machines algorithm

[1]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[6]  Colin R. Goodall,et al.  13 Computation using the QR decomposition , 1993, Computational Statistics.

[7]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[8]  Johan A. K. Suykens,et al.  Least squares support vector machines classifiers : a multi two-spiral benchmark problem , 2001 .

[9]  Andries P. Engelbrecht,et al.  Computational Intelligence: An Introduction , 2002 .

[10]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[11]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[12]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[13]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[14]  J. Billingsley Mathematics for Control , 2005 .

[15]  J. Wilcox,et al.  Adsorption of Trace Elements and Sulfur Dioxide on Ca-Based Sorbents , 2006 .

[16]  Chi-Man Vong,et al.  Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference , 2006, Eng. Appl. Artif. Intell..

[17]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[18]  Alireza Bahadori,et al.  Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems , 2009 .

[19]  Alireza Bahadori,et al.  Prediction of silica carry-over and solubility in steam of boilers using simple correlation , 2010 .

[20]  Alireza Bahadori,et al.  Estimation of performance of steam turbines using a simple predictive tool , 2010 .

[21]  A. Bahadori Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain , 2011 .

[22]  M. Ahmadi Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm , 2011 .

[23]  M. Ahmadi,et al.  New approach for prediction of asphaltene precipitation due to natural depletion by using evolutionary algorithm concept , 2012 .

[24]  M. Ahmadi Neural network based unified particle swarm optimization for prediction of asphaltene precipitation , 2012 .

[25]  Mohammad Ali Ahmadi,et al.  Neural network based swarm concept for prediction asphaltene precipitation due to natural depletion , 2012 .

[26]  Sohrab Zendehboudi,et al.  Prediction of Condensate-to-Gas Ratio for Retrograde Gas Condensate Reservoirs Using Artificial Neural Network with Particle Swarm Optimization , 2012 .

[27]  Ali Elkamel,et al.  Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization , 2013 .

[28]  Amir H. Mohammadi,et al.  Experimental Study and Modeling of Ultrafiltration of Refinery Effluents Using a Hybrid Intelligent Approach , 2013 .

[29]  Alireza Bahadori,et al.  Thermodynamic investigation of asphaltene precipitation during primary oil production laboratory and smart technique , 2013 .

[30]  Amin Shokrollahi,et al.  Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir , 2013, Appl. Soft Comput..

[31]  Alireza Bahadori,et al.  A developed smart technique to predict minimum miscible pressure—eor implications , 2013 .

[32]  Mohammad Ali Ahmadi,et al.  Evolving predictive model to determine condensate-to-gas ratio in retrograded condensate gas reservoirs , 2014 .

[33]  Alireza Bahadori,et al.  Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units , 2014 .

[34]  Mohammad Ali Ahmadi,et al.  Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach , 2014 .

[35]  Mohammad Ali Ahmadi,et al.  Connectionist approach estimates gas–oil relative permeability in petroleum reservoirs: Application to reservoir simulation , 2015 .

[36]  Behzad Pouladi,et al.  Connectionist technique estimates H2S solubility in ionic liquids through a low parameter approach , 2015 .

[37]  A. Bahadori,et al.  A rigorous model to predict the amount of Dissolved Calcium Carbonate Concentration throughout oil field brines: Side effect of pressure and temperature , 2015 .