A pressure- or velocity-dependent acceleration rate law for the shock-to-detonation transition process in PBX 9502 high explosive

[1]  T. Aslam Shock temperature dependent rate law for plastic bonded explosives , 2018 .

[2]  C. Handley,et al.  Understanding the shock and detonation response of high explosives at the continuum and meso scales , 2018 .

[3]  S. Jackson Scaling of the Detonation Product State with Reactant Kinetic Energy , 2017, 1707.09421.

[4]  T. Aslam The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502 , 2017 .

[5]  Mark Short,et al.  Scaling of detonation velocity in cylinder and slab geometries for ideal, insensitive and non-ideal explosives , 2015, Journal of Fluid Mechanics.

[6]  C. Handley Lagrangian Analysis of Velocity Gauge Data to Determine Reaction Rate Histories in EDC37 , 2006 .

[7]  R. R. Alcon,et al.  Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots , 2006 .

[8]  R. Winter,et al.  Experimental study of the shock response of an HMX-based explosive , 2006 .

[9]  D. Scott Stewart,et al.  Equation of state and reaction rate for condensed-phase explosives , 2005 .

[10]  P. Peterson,et al.  Microstructural Differences between Virgin and Recycled Lots of PBX 9502 , 2005 .

[11]  Craig M. Tarver,et al.  Thermal decomposition models for HMX-based plastic bonded explosives , 2004 .

[12]  R. R. Alcon,et al.  IN-SITU MAGNETIC GAUGING TECHNIQUE USED AT LANL , 1999 .

[13]  J. Dick Effect of crystal orientation on shock initiation sensitivity of pentaerythritol tetranitrate explosive , 1984 .

[14]  M. Cowperthwaite Characterization of initiation and detonation by Lagrange gage techniques. Final report , 1983 .

[15]  C. M. Tarver,et al.  Phenomenological model of shock initiation in heterogeneous explosives , 1980 .

[16]  G. E. Seay,et al.  Initiation of a Low‐Density PETN Pressing by a Plane Shock Wave , 1961 .

[17]  J. R. Travis,et al.  SHOCK INITIATION OF SOLID EXPLOSIVES , 1961 .

[18]  J. R. Travis,et al.  Shock initiation of detonation in liquid explo-sives , 1961 .

[19]  Henry Eyring,et al.  The Stability of Detonation. , 1949 .

[20]  R. Menikoff,et al.  Reactive burn models and ignition & growth concept , 2010 .

[21]  T. Aslam,et al.  Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations , 2010 .

[22]  C. Handley THE CREST REACTIVE BURN MODEL , 2008 .

[23]  S. Son,et al.  Burn Rate Measurements of HMX, TATB, DHT, DAAF, and BTATz , 2000 .

[24]  C. Forest Lagrangian analysis, data covariance, and the impulse time integral , 1991 .

[25]  H. C. Vantine,et al.  Accuracy of reaction rates inferred from Lagrange analysis and in-situ gauge measurements , 1981 .

[26]  Terry R. Gibbs,et al.  LASL explosive property data , 1980 .

[27]  M. Cowperthwaite Determination of energy-release rate withthe hydrodynamic properties of detonation waves , 1973 .

[28]  J. Ramsay,et al.  Analysis of Shock Wave and Initiation Data for Solid Explosives , 1965 .

[29]  R. Mcqueen,et al.  Compression of Solids by Strong Shock Waves , 1958 .