Energy Transfer Mechanisms in Organic−Inorganic Hybrids Incorporating Europium(III): A Quantitative Assessment by Light Emission Spectroscopy

This work discusses quantitative aspects of energy transfer occurring in sol−gel derived organic−inorganic di-ureasil hybrids incorporating either [Eu(btfa)3(4,4‘-bpy)(EtOH)] (btfa = benzoyltrifluoroacetonate, 4,4‘-bpy = 4,4‘-bipyridine) or Eu(CF3SO3)3. Host-to-Eu3+ energy transfer occurs either via ligand singlet and triplet (T) excited states or directly from the hybrid emitting centers through the dipole−dipole, dipole−2λ pole (λ = 2, 4, and 6) and exchange mechanisms. This latter process is dominant for all discussed energy transfer pathways. The ligand-to-Eu3+ energy transfer rate is typically 1 order of magnitude larger than the value estimated for direct hybrid-to-Eu3+ transfer (3.75 × 1010 and 3.26 × 109 s-1, respectively, to the 5D1 level). The most efficient luminescence channel is (S0)Hybrid → (T)Hybrid → (T)Ligand → (5D1, 5D0) → 7F0-6. The predicted emission quantum yield of the di-ureasil incorporating [Eu(btfa)3(4,4‘-bpy)(EtOH)] is in excellent agreement with the corresponding experimental v...

[1]  A. Craievich,et al.  Local structure and near-infrared emission features of neodymium-based amine functionalized organic/inorganic hybrids. , 2005, The journal of physical chemistry. B.

[2]  Frederic Chaput,et al.  Hybrid Organic–Inorganic Light-Emitting Diodes , 1999 .

[3]  C. Willis,et al.  Transparent matrix structures for detection of neutron particles based on di-ureasil xerogels , 2004 .

[4]  J. Bantignies,et al.  A better understanding of the self-structuration of bridged silsesquioxanes. , 2004, Angewandte Chemie.

[5]  Rute A. S. Ferreira,et al.  Energy Transfer and Emission Quantum Yields of Organic−Inorganic Hybrids Lacking Metal Activator Centers , 2007 .

[6]  Luís D. Carlos,et al.  White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids: Emitting Centers and Recombination Mechanisms , 2004 .

[7]  Gerd B Rocha,et al.  Lanthanide complex coordination polyhedron geometry prediction accuracies of ab initio effective core potential calculations , 2006, Journal of molecular modeling.

[8]  Gerd B Rocha,et al.  Sparkle model for the calculation of lanthanide complexes: AM1 parameters for Eu(III), Gd(III), and Tb(III). , 2005, Inorganic chemistry.

[9]  G. Kickelbick,et al.  Hybrid materials : synthesis, characterization, and applications , 2007 .

[10]  Luís D. Carlos,et al.  Fine‐Tuning of the Chromaticity of the Emission Color of Organic–Inorganic Hybrids Co‐Doped with EuIII, TbIII, and TmIII , 2002 .

[11]  Y. Men,et al.  Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach , 2000 .

[12]  B. Lebeau,et al.  Design and Properties of Hybrid Organic–Inorganic Nanocomposites for Photonics , 2001 .

[13]  G. Adachi,et al.  Preparation and Luminescence Properties of Organically Modified Silicate Composite Phosphors Doped with an Europium(III) β-Diketonate Complex , 1999 .

[14]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[15]  Michael C. Zerner,et al.  An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene , 1980 .

[16]  E. Knobbe,et al.  Luminescence behavior of Europium complexes in sol-gel derived host materials , 1993 .

[17]  O. Malta Ligand-rare-earth ion energy transfer in coordination compounds. A theoretical approach , 1997 .

[18]  Luís D. Carlos,et al.  Full-color phosphors from amine-functionalized crosslinked hybrids lacking metal activator ions , 2001 .

[19]  N. Turro Modern Molecular Photochemistry , 1978 .

[20]  K. Driesen,et al.  A luminescent tris(2-thenoyltrifluoroacetonato)europium(III) complex covalently linked to a 1,10-phenanthroline-functionalised sol–gel glass , 2004 .

[21]  Filipe A Almeida Paz,et al.  Spectroscopic study of a UV-photostable organic-inorganic hybrids incorporating an Eu3+ beta-diketonate complex. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  P. Judeinstein,et al.  Efficient luminescent materials made by incorporation of terbium(III) and 2,2-bipyridine in silica/poly(ethylene oxide) hybrid gels , 1999 .

[23]  R. Mahiou,et al.  Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes , 2000 .

[24]  Jun Lin,et al.  Preparation and Luminescence Properties of Hybrid Materials Containing Europium(III) Complexes Covalently Bonded to a Silica Matrix , 2002 .

[25]  L. Alcácer,et al.  Sol−Gel Derived Urea Cross-Linked Organically Modified Silicates. 1. Room Temperature Mid-Infrared Spectra , 1999 .

[26]  R. Longo,et al.  Improved point‐charge model within the INDO/S‐CI method for describing the ligand excited states of lanthanide coordination compounds , 2002 .

[27]  Younes Messaddeq,et al.  Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties , 2005 .

[28]  O. Malta,et al.  A theoretical approach to intramolecular energy transfer and emission quantum yields in coordination compounds of rare earth ions , 1998 .

[29]  S. Ribeiro,et al.  Room Temperature Visible/Infrared Emission and Energy Transfer in Nd3+-Based Organic/Inorganic Hybrids , 2003 .

[30]  V. Bermudez,et al.  Structure–photoluminescence relationship in Eu(III) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis , 2005 .

[31]  S. Ribeiro,et al.  White light emission of Eu3+-based hybrid xerogels , 1999 .

[32]  Jorge Morgado,et al.  Highly Photostable Luminescent Poly(ε-caprolactone)siloxane Biohybrids Doped with Europium Complexes , 2007 .

[33]  Michael C. Zerner,et al.  Triplet states via intermediate neglect of differential overlap: Benzene, pyridine and the diazines , 1976 .

[34]  M. Silva,et al.  Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids , 2005 .

[35]  K. Driesen,et al.  Photostability of a highly luminescent europium beta-diketonate complex in imidazolium ionic liquids. , 2005, Chemical communications.

[36]  G. Qian,et al.  Synthesis In Situ, Characterization, and Photostability of Europium β-Diketone Chelates in Organically Modified Silicates (ORMOSILs) , 2004 .

[37]  B. Lebeau,et al.  Organic–inorganic hybrid materials for non-linear optics , 2005 .

[38]  S. C. Nunes,et al.  Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self‐Assembled Alkyl/Siloxane Hybrids , 2007 .

[39]  M. Silva,et al.  Sol-gel processing and structural study of europium-doped hybrid materials , 1999 .

[40]  U. Pischel,et al.  Intramolecular singlet–singlet energy transfer in antenna-substituted azoalkanes , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[41]  Elias Stathatos,et al.  A High-Performance Solid-State Dye-Sensitized Photoelectrochemical Cell Employing a Nanocomposite Gel Electrolyte Made by the Sol–Gel Route , 2002 .

[42]  P. Dannberg,et al.  ORMOCER®s for Optical Interconnection Technology , 2001 .

[43]  Lining Sun,et al.  Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application. , 2005, The journal of physical chemistry. B.

[44]  S. Ribeiro,et al.  Energy-transfer mechanisms and emission quantum yields in Eu3+-based siloxane-poly(oxyethylene) nanohybrids , 2001 .

[45]  J. D’Haen,et al.  Thin Films of Highly Luminescent Lanthanide Complexes Covalently Linked to an Organic−Inorganic Hybrid Material via 2-Substituted Imidazo[4,5-f]-1,10-phenanthroline Groups , 2005 .

[46]  E. Stathatos,et al.  Preparation of thin Ureasil films with strong photoluminescence based on incorporated europium–thenoyltrifluoroacetone–bipyridine complexes , 2002 .

[47]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[48]  H. Girault,et al.  A Time Resolved Laser Induced Fluorescence Study of Photoinduced Electron Transfer at the Water/1,2-Dichloroethane Interface , 1997 .

[49]  M. Bredol,et al.  Luminescence of sol–gel-derived silica doped with terbium-benzoate complex , 2001 .

[50]  Liansheng Li,et al.  Preparation, characterization and photophysical properties of layered zirconium bis(monohydrogenphosphate) intercalated with rare earth complexes , 2000 .

[51]  Hermi F. Brito,et al.  Full‐Color Phosphors from Europium(III)‐Based Organosilicates , 2000 .

[52]  W. M. Faustino,et al.  Intramolecular energy transfer through charge transfer state in lanthanide compounds: a theoretical approach. , 2005, The Journal of chemical physics.

[53]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[54]  Y. Messaddeq,et al.  Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic-inorganic hybrids , 2003 .