Asphericity and clumpiness in the winds of luminous blue variables

We present the first systematic spectropolarimetric study of Luminous Blue Variables (LBVs) in the Galaxy and the Magellanic Clouds, in order to investigate the geometries of their winds. We find that at least half of our sample show changes in polarization across the strong Hα emission line, indicating that the light from the stars is intrinsically polarized and therefore that asphericity already exists at the base of the wind. Multi-epoch spectropolarimetry on four targets reveals variability in their intrinsic polarization. Three of these, AG Car, HR Car and P Cyg, show a position angle (PA) of polarization which appears random with time. Such behaviour can be explained by the presence of strong wind-inhomogeneities, or "clumps" within the wind. Only one star, R 127, shows variability at a constant PA, and hence evidence for axi-symmetry as well as clumpiness. However, if viewed at low inclination, and at limited temporal sampling, such a wind would produce a seemingly random polarization of the type observed in the other three stars. Time-resolved spectropolarimetric monitoring of LBVs is therefore required to determine if LBV winds are axi-symmetric in general. The high fraction of LBVs (>50%) showing intrinsic polarization is to be compared with the lower ∼20-25% for similar studies of their evolutionary neighbours, O supergiants and Wolf-Rayet stars. We anticipate that this higher incidence is due to the lower effective gravities of the LBVs, coupled with their variable temperatures within the bi-stability jump regime. This is also consistent with the higher incidence of wind asphericity that we find in LBVs with strong Hα emission and recent (last ∼10 years) strong variability.

[1]  Henny J. G. L. M. Lamers,et al.  Terminal Velocities and the Bistability of Stellar Winds , 1995 .

[2]  Linda J. Smith,et al.  Ejected Nebulae as Probes of the Evolution of Massive Stars in the Large Magellanic Cloud , 1998 .

[3]  T. Berghöfer,et al.  ROSAT HRI observations of P Cyg and surrounding area , 2000 .

[4]  B. Balick,et al.  On the Formation of the Homunculus Nebula around η Carinae , 1998 .

[5]  Kris Davidson,et al.  η Carinae’s Second Eruption and the Light Curves of the η Carinae Variables , 1999 .

[6]  P. Massey An Unprecedented Change in the Spectrum of S Doradus: As Cool as It Gets , 2000 .

[7]  P. Bastien,et al.  Polarization variability among Wolf-Rayet stars. V: Linear polarization of the bright Cygnus stars and an anticorrelation of variability with wind speed , 1989 .

[8]  C. Leitherer,et al.  The asymmetric wind of R127 , 1993 .

[9]  Mark Clampin,et al.  Nebulae around Luminous Blue Variables: A Unified Picture , 1995 .

[10]  Linda J. Smith,et al.  The Bipolar HR Carinae Nebula: Dynamics and Chemical Abundances , 1997 .

[11]  M. Clampin,et al.  Hubble Space Telescope Imaging Polarimetry of η Carinae , 1999 .

[12]  I. Howarth,et al.  The axisymmetric stellar wind of AG Carinae , 1994 .

[13]  The shock-excited P-Cygni nebula , 1994 .

[14]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[15]  Robert D. Gehrz,et al.  Mass and Kinetic Energy of the Homunculus Nebula around η Carinae , 2003 .

[16]  M. Redman,et al.  The ejecta from the luminous blue variable star P Cygni , 2000 .

[17]  Kenneth H. Nordsieck,et al.  Polarization of light scattered from the winds of early-type stars , 1987 .

[18]  Blobs in Wolf-Rayet Winds: Random Photometric and Polarimetric Variability , 2000, astro-ph/0003362.

[19]  M. Audard,et al.  Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary gamma ² Velorum observations at high and low state. XMM-Newton observations at high and low state , 2004 .

[20]  M. Barlow,et al.  The expansion of the outer circumstellar shell of P Cygni , 1996 .

[21]  Norbert Langer,et al.  Giant Outbursts of Luminous Blue Variables and the Formation of the Homunculus Nebula around η Carinae , 1999 .

[22]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[23]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[24]  Bernhard Wolf,et al.  Long-term spectroscopic monitoring of the Luminous Blue Variable HD 160529 , 2002 .

[25]  J. Linsky,et al.  Discovery of a Little Homunculus within the Homunculus Nebula of η Carinae , 2003 .

[26]  I. Howarth,et al.  A spectropolarimetric survey of northern hemisphere Wolf–Rayet stars , 1998 .

[27]  C. Sterken,et al.  New perceptions on the S Doradus phenomenon and the micro variations of five Luminous Blue Variables (LBVs) , 1997 .

[28]  Kris Davidson,et al.  Eta carinae and its environment , 1997 .

[29]  Kazunori Ishibashi,et al.  Latitude-dependent Effects in the Stellar Wind of η Carinae , 2003, astro-ph/0301394.

[30]  J. Drew,et al.  Hα spectropolarimetry of B[e] and Herbig Be stars , 1999, astro-ph/9901032.

[31]  A. M. Genderen S Doradus variables in the Galaxy and the Magellanic Clouds , 2001 .

[32]  C. Moutou,et al.  Adaptive optics imaging of P Cygni in H , 2000 .

[33]  J. Angel Polarization of thermal X-ray sources , 1969 .

[34]  Tim J. Harries,et al.  Spectropolarimetry of O supergiants , 2002 .

[35]  A. Nota,et al.  Luminous Blue Variables: Massive Stars in Transition , 1997 .

[36]  D. Ebbets,et al.  Hubble Space Telescope Wide Field Planetary Camera 2 Observations of η Carinae , 1998 .

[37]  David K. Aitken,et al.  Spectral Modulation, or Ripple, in Retardation Plates for Linear and Circular Polarization , 2001 .

[38]  Jorick S. VinkAlex de Koter Predictions of variable mass loss for Luminous Blue Variables , 2002, astro-ph/0207170.

[39]  C. Leitherer,et al.  Coronographic imaging of the bipolar nebula around the luminous blue variable R 127 , 1993 .

[40]  B. Balick,et al.  The homunculus of Eta Carinae: An interacting stellar winds paradigm , 1995 .

[41]  Karen S. Bjorkman,et al.  A Study of the Asymmetric Wind of P Cygni , 1991 .

[42]  M. Barlow,et al.  Further variability of the compact radio nebula of P Cygni , 2002 .

[43]  K. Weis,et al.  On the structure and kinematics of nebulae around LBVs and LBV candidates in the LMC , 2003, astro-ph/0306501.

[44]  J. Drew,et al.  The evolved B[e] star HD 87643: observations and a radiation‐driven disc wind model for B[e] stars , 1998, astro-ph/9807244.

[45]  M. Breger,et al.  On standard polarized stars. , 1982 .

[46]  J. Drew,et al.  Probing the circumstellar structure of Herbig Ae/Be stars , 2002, astro-ph/0208137.

[47]  Damineli,et al.  eta Carinae: Binarity Confirmed. , 1999, The Astrophysical journal.

[48]  J. Vink,et al.  The Missing Luminous Blue Variables and the Bistability Jump , 2004, astro-ph/0407202.

[49]  P. Cox,et al.  Discovery of a massive equatorial torus in the η Carinae stellar system , 1999, Nature.

[50]  K. Wood,et al.  The Effect of Multiple Scattering on the Polarization from Axisymmetric Circumstellar Envelopes. I. Pure Thomson Scattering Envelopes , 1996 .

[51]  W. Schmutz,et al.  Long-term spectroscopic monitoring of the Luminous Blue Variable AG Carinae , 2001 .

[52]  C. Leitherer,et al.  Mapping AG Carinae: Long-Slit Spectroscopy and Coronographic Imaging of the Nebula and Jet , 1992 .

[53]  C. Leitherer,et al.  Geometry and physical conditions in the stellar wind of AG Carinae , 1994 .

[54]  N. Mavromatos,et al.  LECT NOTES PHYS , 2002 .

[55]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[56]  M. Schoeller,et al.  Direct measurement of the size and shape of the present-day stellar wind of $\eta$ Carinae , 2003, astro-ph/0310399.

[57]  I. McLean Interpretation of the intrinsic polarizations of early-type emission-line stars , 1979 .

[58]  Stanley P. Owocki,et al.  Radiatively Driven Winds and the Shaping of Bipolar Luminous Blue Variable Nebulae , 2002 .

[59]  S. White,et al.  Radio images of four luminous blue variable stars , 2002 .