Neutron production and implosion characteristics of a deuterium gas-puff Z pinch
暂无分享,去创建一个
Robert W. Clark | Jack Davis | Gary Wayne Cooper | John P. Apruzese | Christine Anne Coverdale | N. Qi | J. P. Chittenden | Paul David LePell | Y. K. Chong | G. Cooper | C. Ruiz | A. Velikovich | J. Chittenden | J. Levine | A. Nelson | C. Coverdale | C. Deeney | N. Qi | J. Apruzese | P. Lepell | R. Clark | J. Banister | Y. Chong | Alexander L. Velikovich | J. S. Levine | Carlos L. Ruiz | Christopher Deeney | A. J. Nelson | J. Franklin | J. W. Banister | J. Franklin | Jack Davis
[1] P. B. Radha,et al. Study of direct-drive, deuterium–tritium gas-filled plastic capsule implosions using nuclear diagnostics at OMEGA , 2001 .
[2] R. Lemke,et al. Wire array implosion characteristics from determination of load inductance on the Z pulsed-power accelerator , 2004 .
[3] G. Cooper,et al. The NIF Total Neutron Yield Diagnostic , 2000 .
[4] C. Coverdale,et al. Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2 x 10(9) Kelvin. , 2006, Physical review letters.
[5] A. Velikovich,et al. Fast commutation of high current in double wire array Z-pinch loads , 1997 .
[6] A. L. Velikovich,et al. Suppression of Rayleigh–Taylor instability by the snowplow mechanism , 1993 .
[7] J. Mather. Formation of a High‐Density Deuterium Plasma Focus , 1965 .
[8] W. Stygar,et al. Efficient argon K-shell radiation from a Z pinch at currents >15 MA , 2001 .
[9] Robert W. Clark,et al. Z-pinch plasma neutron sources , 2007 .
[10] G. R. Bennett,et al. Dynamic hohlraum driven inertial fusion capsules , 2002 .
[11] G. Chandler,et al. Current scaling of radiated power for 40-mm diameter single wire arrays on Z , 2004 .
[12] N. Roderick,et al. The effect of load thickness on the performance of high velocity, annular Z-pinch implosions , 2001 .
[13] C. Jennings,et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches , 2004 .
[14] A. Velikovich,et al. Efficient radiation production in long implosions of structured gas-puff Z pinch loads from large initial radius. , 2005, Physical review letters.
[15] J. J. Ramirez,et al. X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[16] J. Levine,et al. Proof-of-principle laser-induced fluorescence measurements of gas distributions from supersonic nozzles , 2003 .
[17] J. Lindl. Development of the indirect‐drive approach to inertial confinement fusion and the target physics basis for ignition and gain , 1995 .
[18] S. Slutz,et al. Production of Thermonuclear Neutrons from Deuterium-Filled Capsule Implosions Driven by Z-Pinch Dynamic Hohlraums , 2004 .
[19] R. G. Adams,et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research , 2004 .
[20] Robert W. Clark,et al. Titanium K-shell x-ray production from high velocity wire array implosions on the 20-MA Z accelerator , 1999 .
[21] A. Velikovich,et al. An efficient tabulated collisional radiative equilibrium radiation transport model suitable for multidimensional hydrodynamics calculations , 2001 .
[22] M. Matzen. Z pinches as intense x-ray sources for high-energy density physics applications , 1997 .