Data storage based on photochromic and photoconvertible fluorescent proteins.

[1]  G. Lewis,et al.  Reversible Photochemical Processes in Rigid Media: The Dissociation of Organic Molecules into Radicals and Ions , 1942 .

[2]  Y. Hirshberg Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model , 1956 .

[3]  J. Faber,et al.  Normal Table of Xenopus Laevis (Daudin) , 1958 .

[4]  P. J. V. Heerden A New Optical Method of Storing and Retrieving Information , 1963 .

[5]  D. B. Fraser,et al.  HOLOGRAPHIC STORAGE IN LITHIUM NIOBATE , 1968 .

[6]  V. F. Mandzhikov,et al.  Nonlinear coloration of photochromic spiropyran solutions , 1973 .

[7]  Alastair M. Glass,et al.  Photorefractive effects for reversible holographic storage of information , 1975 .

[8]  M. K. Kim,et al.  Degenerate photon echoes: simultaneous storage of multiple optical data. , 1988, Optics letters.

[9]  K. Honda,et al.  A multi-mode chemical transducer 1 new conjugated function of photochromism and electrochromism of azo-quinone compound , 1989 .

[10]  D A Parthenopoulos,et al.  Three-Dimensional Optical Storage Memory , 1989, Science.

[11]  N. Uesugi,et al.  248-Bit optical data storage in Eu(3+):YAlO(3) by accumulated photon echoes. , 1990, Optics letters.

[12]  J. Salbeck,et al.  Functionalized photochromics for molecular switching: the multistabilities of a dihydroazulene–anthraquinone system , 1991 .

[13]  A. Marrakchi,et al.  Noise-free holographic storage in iron-doped lithium niobate crystals. , 1994, Optics letters.

[14]  H. Spreitzer,et al.  Multi‐Mode Switching Based on Dihydroazulene/vinylheptafulvene Photochromism: Synergism of Photochromism and Redox Switching in Heteroaryl‐Functionalized Systems , 1996 .

[15]  R. Birge,et al.  Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films. , 1996, Optics letters.

[16]  L Hesselink,et al.  Digital holographic storage system incorporating thermal fixing in lithium niobate. , 1996, Optics letters.

[17]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[18]  Fernando Pina,et al.  Photochromism of 4‘-Methoxyflavylium Perchlorate. A “Write−Lock−Read−Unlock−Erase” Molecular Switching System , 1997 .

[19]  R R Neurgaonkar,et al.  High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers. , 1997, Optics letters.

[20]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[21]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[22]  M Gu,et al.  Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer. , 1999, Optics letters.

[23]  Optical CDMA System Using Bacteriorhodopsin for Optical Data Storage , 1999, Biotechnology progress.

[24]  M Gu,et al.  Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer. , 1999, Optics letters.

[25]  S C Esener,et al.  Three-dimensional optical data storage in a fluorescent dye-doped photopolymer. , 2000, Applied optics.

[26]  W. Bentley,et al.  Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter. , 2000, Biotechnology and bioengineering.

[27]  Irving L. Weissman,et al.  "Fluorescent timer": protein that changes color with time. , 2000, Science.

[28]  Garry Berkovic,et al.  Spiropyrans and Spirooxazines for Memories and Switches , 2000 .

[29]  Yasushi Yokoyama,et al.  Fulgides for Memories and Switches. , 2000, Chemical reviews.

[30]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[31]  Satoshi Kawata,et al.  Three‐Dimensional Optical Data Storage Using Photochromic Materials , 2000 .

[32]  S. Lukyanov,et al.  Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog* , 2000, The Journal of Biological Chemistry.

[33]  J. Daub,et al.  Multimode-photochromism based on strongly coupled dihydroazulene and diarylethene. , 2001, Chemistry.

[34]  J P Cox,et al.  Long-term data storage in DNA. , 2001, Trends in biotechnology.

[35]  J S Jang,et al.  Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage. , 2001, Optics letters.

[36]  R. Vaia,et al.  High-density optical data storage with one-photon and two-photon near-field fluorescence microscopy. , 2001, Applied optics.

[37]  Pavel Cheben,et al.  A photopolymerizable glass with diffraction efficiency near 100% for holographic storage , 2001 .

[38]  Louis Tiefenauer,et al.  Photolithographic generation of protein micropatterns for neuron culture applications. , 2002, Biomaterials.

[39]  Shaoyou Chu,et al.  Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. , 2002, Biochemistry.

[40]  Masahiro Irie,et al.  Organic chemistry: A digital fluorescent molecular photoswitch , 2002, Nature.

[41]  A. Miyawaki,et al.  An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  T. McAnaney,et al.  Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. , 2002, Biochemistry.

[43]  S. Hell,et al.  Imaging and writing at the nanoscale with focused visible light through saturable optical transitions , 2003 .

[44]  T. Juchem,et al.  Biomolecular optical data storage and data encryption , 2003, IEEE Transactions on NanoBioscience.

[45]  Mitsuyoshi Ueda,et al.  Development of combinatorial bioengineering using yeast cell surface display--order-made design of cell and protein for bio-monitoring. , 2003, Biosensors & bioelectronics.

[46]  Atsushi Miyawaki,et al.  Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. , 2003, Molecular cell.

[47]  Y. Yamagata,et al.  Fabrication of Protein Microarrays for Immunoassay Using the Electrospray Deposition (ESD) Method , 2003 .

[48]  W. Webb,et al.  Fluorescence Photoconversion Kinetics in Novel Green Fluorescent Protein pH Sensors (pHluorins) , 2004 .

[49]  A. Miyawaki,et al.  Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Wiedenmann,et al.  EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Stefan W. Hell,et al.  Strategy for far-field optical imaging and writing without diffraction limit , 2004 .

[52]  Konstantin A Lukyanov,et al.  Photoswitchable cyan fluorescent protein for protein tracking , 2004, Nature Biotechnology.

[53]  A. Miyawaki,et al.  Regulated Fast Nucleocytoplasmic Shuttling Observed by Reversible Protein Highlighting , 2004, Science.

[54]  Roger Y. Tsien,et al.  Third-generation GFP biosensors for real-time readout of pH and redox potential in living cells , 2004, SPIE BiOS.

[55]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Christian Eggeling,et al.  Structure and mechanism of the reversible photoswitch of a fluorescent protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Xiaolei Shi,et al.  Characterization of microholograms recorded in a thermoplastic medium for three-dimensional optical data storage. , 2005, Optics letters.

[58]  M. Sauer Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Shinichiro Nakamura,et al.  Three bits eight states photochromic recording and nondestructive readout by using IR light. , 2005, Chemistry.

[60]  Baoli Yao,et al.  Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films. , 2005, Optics letters.

[61]  T. McAnaney,et al.  Green fluorescent protein variants as ratiometric dual emission pH sensors. 3. Temperature dependence of proton transfer. , 2005, Biochemistry.

[62]  Peter Dedecker,et al.  Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Lambertus Hesselink,et al.  Microholographic multilayer optical disk data storage. , 2005, Applied optics.

[64]  A. Parikh,et al.  Phospholipid morphologies on photochemically patterned silane monolayers. , 2005, Journal of the American Chemical Society.

[65]  K. Christman,et al.  Protein micropatterns using a pH-responsive polymer and light. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[66]  Ming Lei,et al.  Polarization holographic high-density optical data storage in bacteriorhodopsin film. , 2005, Applied optics.

[67]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[68]  K. Hatta,et al.  Cell tracking using a photoconvertible fluorescent protein , 2006, Nature Protocols.

[69]  Tomomi Sato,et al.  HuC:Kaede, a useful tool to label neural morphologies in networks in vivo , 2006, Genesis.

[70]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[71]  G. Ulrich Nienhaus,et al.  Photoconvertible Fluorescent Protein EosFP: Biophysical Properties and Cell Biology Applications , 2006, Photochemistry and photobiology.

[72]  Alain Fort,et al.  Rewritable optical data storage in azobenzene copolymers. , 2006, Optics express.

[73]  E. Nishida,et al.  Dynamics of the Ras/ERK MAPK Cascade as Monitored by Fluorescent Probes* , 2006, Journal of Biological Chemistry.

[74]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[75]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[76]  J. Wiedenmann,et al.  Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family , 2006, Expert review of proteomics.

[77]  K. Hatta,et al.  Visualizing neurons one‐by‐one in vivo: Optical dissection and reconstruction of neural networks with reversible fluorescent proteins , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[78]  Peter Dedecker,et al.  Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[79]  Chandra Verma,et al.  Proteins as data storage devices: insights from computer models , 2006 .

[80]  S. Lukyanov,et al.  Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2 , 2007, Nature Protocols.

[81]  Genetically Engineered and Optical Probes for Biomedical Applications IV , 2007 .

[82]  M. Tomita,et al.  Alignment‐Based Approach for Durable Data Storage into Living Organisms , 2007, Biotechnology progress.

[83]  Peter Dedecker,et al.  A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. , 2007, Journal of the American Chemical Society.

[84]  Konstantin A Lukyanov,et al.  Using photoactivatable fluorescent protein Dendra2 to track protein movement. , 2007, BioTechniques.

[85]  A. Miyawaki,et al.  Ultrafast excited-state dynamics of the photoswitchable protein Dronpa. , 2007, Journal of the American Chemical Society.

[86]  Plastic-embedded protein crystals. , 2007, Journal of synchrotron radiation.

[87]  J. Wiedenmann,et al.  Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy. , 2007, Biophysical journal.

[88]  M. Gleeson,et al.  Optical response of photopolymer materials for holographic data storage applications. , 2007, Journal of nanoscience and nanotechnology.

[89]  Peter Dedecker,et al.  Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and application to the fluorescent protein Dronpa. , 2007, Journal of the American Chemical Society.

[90]  Christian Eggeling,et al.  Structural basis for reversible photoswitching in Dronpa , 2007, Proceedings of the National Academy of Sciences.

[91]  Helmut Grubmüller,et al.  Chromophore Protonation State Controls Photoswitching of the Fluoroprotein asFP595 , 2008, PLoS Comput. Biol..

[92]  D. Staroverov,et al.  Imaging of Intracellular Hydrogen Peroxide Production with HyPer upon Stimulation of HeLa Cells with EGF. , 2019, Methods in molecular biology.

[93]  S. Doose Trends in biological optical microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[94]  A. Miyawaki,et al.  Light-dependent regulation of structural flexibility in a photochromic fluorescent protein , 2008, Proceedings of the National Academy of Sciences.

[95]  D. Staroverov,et al.  Imaging of intracellular hydrogen peroxide production with HyPer upon stimulation of HeLa cells with epidermal growth factor. , 2008, Methods in molecular biology.

[96]  Maarten Merkx,et al.  His-tags as Zn(II) binding motifs in a protein-based fluorescent sensor. , 2008, Protein engineering, design & selection : PEDS.

[97]  Allen Taflove,et al.  Photonic nanojet-enabled optical data storage. , 2008, Optics express.

[98]  M. Field,et al.  Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations , 2008, Proceedings of the National Academy of Sciences.

[99]  L Hesselink,et al.  Three-dimensional optical disk data storage via the localized alteration of a format hologram. , 2008, Applied optics.

[100]  Mike Heilemann,et al.  Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. , 2008, Journal of structural biology.

[101]  K. Nakayama,et al.  Protein recording material: photorecord/erasable protein array using a UV-eliminative linker. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[102]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[103]  Mike Heilemann,et al.  Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[104]  M. Field,et al.  Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings. , 2009, Journal of the American Chemical Society.

[105]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[106]  M. Heilemann,et al.  Photoswitches: Key molecules for subdiffraction‐resolution fluorescence imaging and molecular quantification , 2009 .

[107]  Jim Berg,et al.  A genetically encoded fluorescent reporter of ATP/ADP ratio , 2008, Nature Methods.

[108]  Johan Hofkens,et al.  Optical Encoding of Silver Zeolite Microcarriers , 2010, Advanced materials.

[109]  V. Adam,et al.  Low-temperature switching by photoinduced protonation in photochromic fluorescent proteins , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.