Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes
暂无分享,去创建一个
[1] K. Sun,et al. Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting , 2012, Nanotechnology.
[2] D. Nocera,et al. Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.
[3] T. Jaramillo,et al. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. , 2011, Nano letters.
[4] Nathan S. Lewis,et al. Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes , 2011 .
[5] Ib Chorkendorff,et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.
[6] Nathan S. Lewis,et al. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays , 2011 .
[7] N. Lewis,et al. Designing electronic/ionic conducting membranes for artificial photosynthesis , 2011 .
[8] N. Lewis,et al. Electrical Characterization of Si Microwires and of Si Microwire/Conducting Polymer Composite Junctions , 2011 .
[9] Nathan S. Lewis,et al. High-performance Si microwire photovoltaics , 2011 .
[10] N. Lewis,et al. pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes , 2011 .
[11] Nathan S Lewis,et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.
[12] James R. McKone,et al. Solar water splitting cells. , 2010, Chemical reviews.
[13] Joshua M. Spurgeon,et al. Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.
[14] Nathan S. Lewis,et al. Si microwire-array solar cells , 2010 .
[15] Nathan S Lewis,et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.
[16] Nathan S. Lewis,et al. Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.
[17] Nathan S Lewis,et al. Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.
[18] Nathan S. Lewis,et al. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .
[19] G. Whitesides,et al. Topographical Micropatterning of Poly(dimethylsiloxane) Using Laminar Flows of Liquids in Capillaries , 2001 .
[20] Eric L. Miller,et al. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .
[21] M. N. Mahmood,et al. Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions , 1984 .
[22] Adam Heller,et al. Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .
[23] Adam Heller,et al. Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .
[24] S. Schuldiner. Hydrogen Overvoltage on Bright Platinum II . pH and Salt Effects in Acid, Neutral, and Alkaline Solutions , 1954 .
[25] J. Nelson. The physics of solar cells , 2003 .
[26] M. N. Mahmood,et al. Low overvoltage electrocatalysts for hydrogen evolving electrodes , 1981 .