Yield curve modeling and forecasting using semiparametric factor dynamics

Using a dynamic semiparametric factor model (DSFM) we investigate the term structure of interest rates. The proposed methodology is applied to monthly interest rates for four southern European countries: Greece, Italy, Portugal and Spain from the introduction of the Euro to the recent European sovereign-debt crisis. Analyzing this extraordinary period, we compare our approach with the standard market method – dynamic Nelson–Siegel model. Our findings show that two nonparametric factors capture the spatial structure of the yield curve for each of the bond markets separately. We attributed both factors to the slope of the yield curve. For panel term structure data, three nonparametric factors are necessary to explain 95% variation. The estimated factor loadings are unit root processes and reveal high persistency. In comparison with the benchmark model, the DSFM technique shows superior short-term forecasting in times of financial distress.

[1]  E. Mammen,et al.  Time Series Modelling With Semiparametric Factor Dynamics , 2007 .

[2]  R. Weron,et al.  A Semiparametric Factor Model for Electricity Forward Curve Dynamics , 2008 .

[3]  W. Härdle,et al.  VAR Modeling for Dynamic Loadings Driving Volatility Strings , 2008 .

[4]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[5]  Wenjuan Chen,et al.  Do Japanese Stock Prices Reflect Macro Fundamentals , 2012 .

[6]  John B. Taylor Discretion versus policy rules in practice , 1993 .

[7]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[8]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[9]  Glenn D. Rudebusch,et al.  The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach , 2004 .

[10]  Oldrich A Vasicek,et al.  Term Structure Modeling Using Exponential Splines , 1982 .

[11]  Wolfgang Härdle,et al.  A semiparametric factor model for implied volatility surface dynamics , 2006 .

[12]  Peter N. C. Mohr,et al.  Risk Patterns and Correlated Brain Activities. Multidimensional Statistical Analysis of fMRI Data in Economic Decision Making Study , 2013, Psychometrika.

[13]  W. Härdle,et al.  VAR Modeling for Dynamic Semiparametric Factors of Volatility Strings , 2006 .

[14]  F. Diebold,et al.  Forecasting the Term Structure of Government Bond Yields , 2002 .

[15]  Arnold Zellner,et al.  Simplicity, Inference and Modelling , 2002 .

[16]  N. Hautsch,et al.  Yield curve factors, term structure volatility, and bond risk premia , 2008 .

[17]  Alan G. White,et al.  Pricing Interest-Rate-Derivative Securities , 1990 .

[18]  Jonathan H. Wright,et al.  The TIPS Yield Curve and Inflation Compensation , 2007 .

[19]  J. O. Ramsay,et al.  Functional Data Analysis (Springer Series in Statistics) , 1997 .

[20]  Stefan Trück,et al.  The Dynamics of Hourly Electricity Prices , 2010 .

[21]  Fernando Tusell Simplicity, Inference and Modelling , 2003 .

[22]  Clive G. Bowsher,et al.  The Dynamics of Economic Functions: Modeling and Forecasting the Yield Curve , 2008 .

[23]  Enno Mammen,et al.  A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics , 2005 .

[24]  B. Lin Fitting term structure of interest rates using B-splines: the case of Taiwanese Government bonds , 2002 .

[25]  Glenn D. Rudebusch,et al.  An Arbitrage-Free Generalized Nelson–Siegel Term Structure Model , 2008 .

[26]  A. Siegel,et al.  Parsimonious modeling of yield curves , 1987 .

[27]  C. Hafner,et al.  Volatility of price indices for heterogeneous goods , 2012 .

[28]  G. Kauermann,et al.  Estimating the term structure of interest rates using penalized splines , 2006 .

[29]  Andrew Ang,et al.  A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables , 2003 .

[30]  T. Dickhaus,et al.  Multiple point hypothesis test problems and effective numbers of tests , 2012 .

[31]  Eduardo S. Schwartz,et al.  Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model , 1992 .

[32]  K. Nyholm,et al.  How Arbitrage-Free is the Nelson-Siegel Model? , 2008, SSRN Electronic Journal.