Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1

[1]  Jun Liu,et al.  Serum ferritin as a risk factor for type 2 diabetes mellitus, regulated by liver transferrin receptor 2. , 2021, Endocrine connections.

[2]  A. Galli,et al.  Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction , 2021, Cells.

[3]  Yunxia Zhu,et al.  Protocol for in vivo and ex vivo assessments of glucose-stimulated insulin secretion in mouse islet β cells , 2021, STAR protocols.

[4]  Lingfeng He,et al.  Asymmetrical Arginine Dimethylation of Histone H4 by 8-oxoG/OGG1/PRMT1 is Essential for Oxidative Stress-induced Transcription Activation. , 2021, Free radical biology & medicine.

[5]  K. Götze,et al.  Secreted factors from mouse embryonic fibroblasts maintain repopulating function of single cultured hematopoietic stem cells , 2020, Haematologica.

[6]  G. Dianov,et al.  Src‐mediated phosphorylation of GAPDH regulates its nuclear localization and cellular response to DNA damage , 2020, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  G. Ronzitti,et al.  Human Immune Responses to Adeno-Associated Virus (AAV) Vectors , 2020, Frontiers in Immunology.

[8]  Ali H. Cetin,et al.  Adeno-Associated Virus Technologies and Methods for Targeted Neuronal Manipulation , 2019, bioRxiv.

[9]  Rui Li,et al.  Synaptotagmin 7 in twist-related protein 1-mediated epithelial – Mesenchymal transition of non-small cell lung cancer , 2019, EBioMedicine.

[10]  H. Sampath,et al.  Roles of OGG1 in transcriptional regulation and maintenance of metabolic homeostasis. , 2019, DNA repair.

[11]  Hui Yang,et al.  Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis , 2019, Nature.

[12]  M. Montminy,et al.  CREB Promotes Beta Cell Gene Expression by Targeting Its Coactivators to Tissue-Specific Enhancers , 2019, Molecular and Cellular Biology.

[13]  Qiqing Huang,et al.  Glucolipotoxicity-Inhibited miR-299-5p Regulates Pancreatic β-Cell Function and Survival , 2018, Diabetes.

[14]  I. Boldogh,et al.  The roles of base excision repair enzyme OGG1 in gene expression , 2018, Cellular and Molecular Life Sciences.

[15]  M. Muckenthaler,et al.  Uncoupled iron homeostasis in type 2 diabetes mellitus , 2017, Journal of Molecular Medicine.

[16]  C. Burrows,et al.  Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair , 2016, Proceedings of the National Academy of Sciences.

[17]  T. Liang,et al.  Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet β-Cells , 2016, Diabetes.

[18]  T. Südhof,et al.  Synaptotagmin-7 phosphorylation mediates GLP-1–dependent potentiation of insulin secretion from β-cells , 2015, Proceedings of the National Academy of Sciences.

[19]  K. Prasadan,et al.  Pancreatic cell tracing, lineage tagging and targeted genetic manipulations in multiple cell types using pancreatic ductal infusion of adeno-associated viral vectors and/or cell-tagging dyes , 2014, Nature Protocols.

[20]  A. Brasier,et al.  8-Oxoguanine DNA Glycosylase-1 Augments Proinflammatory Gene Expression by Facilitating the Recruitment of Site-Specific Transcription Factors , 2014, The Journal of Immunology.

[21]  M. Jackson,et al.  The Functional Significance of Synaptotagmin Diversity in Neuroendocrine Secretion , 2013, Front. Endocrinol..

[22]  D. McClain,et al.  Iron and diabetes risk. , 2013, Cell metabolism.

[23]  Patrik Rorsman,et al.  Regulation of insulin secretion in human pancreatic islets. , 2013, Annual review of physiology.

[24]  S. Twigg,et al.  Diabetes and nonalcoholic Fatty liver disease: a pathogenic duo. , 2013, Endocrine reviews.

[25]  R. Holman Type 2 diabetes mellitus in 2012: Optimal management of T2DM remains elusive , 2013, Nature Reviews Endocrinology.

[26]  H. Sampath,et al.  8-Oxoguanine DNA Glycosylase (OGG1) Deficiency Increases Susceptibility to Obesity and Metabolic Dysfunction , 2012, PloS one.

[27]  N. Kocabas,et al.  The role of GSTM1, GSTT1, GSTP1, and OGG1 polymorphisms in type 2 diabetes mellitus risk: a case-control study in a Turkish population. , 2012, Gene.

[28]  S. Mitra,et al.  Activation of Ras Signaling Pathway by 8-Oxoguanine DNA Glycosylase Bound to Its Excision Product, 8-Oxoguanine* , 2012, The Journal of Biological Chemistry.

[29]  P. Zimmet,et al.  The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives , 2012, Nature Reviews Endocrinology.

[30]  F. Ashcroft,et al.  Diabetes Mellitus and the β Cell: The Last Ten Years , 2012, Cell.

[31]  Y. Mori,et al.  Functional Coupling of Rab3-interacting Molecule 1 (RIM1) and L-type Ca2+ Channels in Insulin Release* , 2011, Journal of Biological Chemistry.

[32]  Junwei Yang,et al.  Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic β-cells. , 2011, Biochemical and biophysical research communications.

[33]  J. Miyazaki,et al.  Rim2alpha determines docking and priming states in insulin granule exocytosis. , 2010, Cell metabolism.

[34]  Zhiping P Pang,et al.  Cell biology of Ca2+-triggered exocytosis. , 2010, Current opinion in cell biology.

[35]  H. Kaneto,et al.  Role of Reactive Oxygen Species in the Progression of Type 2 Diabetes and Atherosclerosis , 2010, Mediators of inflammation.

[36]  V. Fonseca Defining and Characterizing the Progression of Type 2 Diabetes , 2009, Diabetes Care.

[37]  V. De Sanctis,et al.  Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidence and prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. , 2008, Pediatric endocrinology reviews : PER.

[38]  H. Abboud,et al.  Mechanism of Oxidative DNA Damage in Diabetes , 2008, Diabetes.

[39]  T. Südhof,et al.  Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice , 2008, Proceedings of the National Academy of Sciences.

[40]  V. O'shea,et al.  Base-excision repair of oxidative DNA damage , 2007, Nature.

[41]  W. Markesbery,et al.  Identification and characterization of OGG1 mutations in patients with Alzheimer's disease , 2007, Nucleic acids research.

[42]  M. Prentki,et al.  Munc13-1 Deficiency Reduces Insulin Secretion and Causes Abnormal Glucose Tolerance , 2006, Diabetes.

[43]  S. Ledoux,et al.  Protection of INS-1 cells from free fatty acid-induced apoptosis by targeting hOGG1 to mitochondria. , 2006, Diabetes.

[44]  T. Rosenquist,et al.  Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium(II): implications for cadmium genotoxicity. , 2002, DNA repair.

[45]  Jessica Wang-Rodriguez,et al.  Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes , 2002, BMC endocrine disorders.

[46]  T. Südhof,et al.  Molecular determinants of regulated exocytosis. , 2002, Diabetes.

[47]  Wei Zhang,et al.  Munc-18 Associates with Syntaxin and Serves as a Negative Regulator of Exocytosis in the Pancreatic β-Cell* , 2000, The Journal of Biological Chemistry.

[48]  S. Kawanishi,et al.  Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(II). , 1999, Mutation research.

[49]  R. Curi,et al.  Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. , 2003, Diabetes.