Radical computations of zero-dimensional ideals and real root counting

The computation of the radical of a zero-dimensional ideal plays an important role in various areas of computer algebra. A bunch of different methods have been published to meet this task (see e.g. [4,8,11,13–17]). The method presented in this paper is strongly connected to a recent approach to the real root counting problem as described in [2,18]. It provides a lot of information for real root counting already in the process of calculating the radical. In this sense this approach is well-suited for real root counting problems.

[1]  Uwe Storch,et al.  Lehrbuch der Algebra , 1981 .

[2]  Y. N. Lakshman,et al.  On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.

[3]  Erich Kaltofen,et al.  Computational algebraic complexity , 1990 .

[4]  Teresa Krick,et al.  An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials , 1991, AAECC.

[5]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[6]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[7]  Georg Heinig,et al.  Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .

[8]  U. Storch,et al.  Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte , 1976 .

[9]  Marie-Françoise Roy,et al.  Counting real zeros in the multivariate case , 1993 .

[10]  Lajos Rónyai,et al.  Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..

[11]  Jean-Paul Cardinal,et al.  Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .

[12]  Laureano González Vega La sucesión de Sturm-Habicht y sus aplicaciones al álgebra computacional , 1990 .

[13]  Tomás Recio,et al.  Sturm-Habicht sequence , 1989, ISSAC '89.

[14]  Patrizia M. Gianni,et al.  Decomposition of Algebras , 1988, ISSAC.

[15]  Y. N. Lakshman,et al.  On the Complexity of Zero-dimensional Algebraic Systems , 1991 .

[16]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[17]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .