Radical computations of zero-dimensional ideals and real root counting
暂无分享,去创建一个
[1] Uwe Storch,et al. Lehrbuch der Algebra , 1981 .
[2] Y. N. Lakshman,et al. On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.
[3] Erich Kaltofen,et al. Computational algebraic complexity , 1990 .
[4] Teresa Krick,et al. An Algorithm for the Computation of the Radical of an Ideal in the Ring of Polynomials , 1991, AAECC.
[5] Patrizia M. Gianni,et al. Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..
[6] Uwe Storch,et al. Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .
[7] Georg Heinig,et al. Algebraic Methods for Toeplitz-like Matrices and Operators , 1984 .
[8] U. Storch,et al. Quasi-Frobenius-Algebren und lokal vollständige Durchschnitte , 1976 .
[9] Marie-Françoise Roy,et al. Counting real zeros in the multivariate case , 1993 .
[10] Lajos Rónyai,et al. Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..
[11] Jean-Paul Cardinal,et al. Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .
[12] Laureano González Vega. La sucesión de Sturm-Habicht y sus aplicaciones al álgebra computacional , 1990 .
[13] Tomás Recio,et al. Sturm-Habicht sequence , 1989, ISSAC '89.
[14] Patrizia M. Gianni,et al. Decomposition of Algebras , 1988, ISSAC.
[15] Y. N. Lakshman,et al. On the Complexity of Zero-dimensional Algebraic Systems , 1991 .
[16] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[17] H. Stetter,et al. An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .