Short peptide amyloid organization: stabilities and conformations of the islet amyloid peptide NFGAIL.

[1]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[2]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[3]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[4]  C. Betsholtz,et al.  Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Takashima,et al.  Three-dimensional structures of the amyloid beta peptide (25-35) in membrane-mimicking environment. , 1996, Biochemistry.

[6]  R. Mason,et al.  Alzheimer's Disease Amyloid β Peptide 25-35 Is Localized in the Membrane Hydrocarbon Core: X-Ray Diffraction Analysis , 1996 .

[7]  C. Blake,et al.  From the globular to the fibrous state: protein structure and structural conversion in amyloid formation , 1998, Quarterly Reviews of Biophysics.

[8]  T. Benzinger,et al.  Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register , 1998 .

[9]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[10]  C. Brooks,et al.  Folding Free Energy Surface of a Three-Stranded β-Sheet Protein , 1999 .

[11]  D. Raleigh,et al.  Effects of sequential proline substitutions on amyloid formation by human amylin20-29. , 1999, Biochemistry.

[12]  D. Raleigh,et al.  Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin. , 1999, Journal of molecular biology.

[13]  R. Leapman,et al.  Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils , 2000 .

[14]  S. Meredith,et al.  Review: Model Peptides and the Physicochemical Approach to β-Amyloids , 2000 .

[15]  H. Mulder,et al.  Islet amyloid polypeptide in the islets of Langerhans: friend or foe? , 2000, Diabetologia.

[16]  P. Lansbury,et al.  Amyloid fibrillogenesis: themes and variations. , 2000, Current opinion in structural biology.

[17]  J. Bernhagen,et al.  Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. , 2000, Journal of molecular biology.

[18]  R. Leapman,et al.  Amyloid Fibril Formation by Aβ16-22, a Seven-Residue Fragment of the Alzheimer's β-Amyloid Peptide, and Structural Characterization by Solid State NMR† , 2000 .

[19]  R. Kisilevsky Review: amyloidogenesis-unquestioned answers and unanswered questions. , 2000, Journal of structural biology.

[20]  D. Pal,et al.  The interrelationships of side-chain and main-chain conformations in proteins. , 2001, Progress in biophysics and molecular biology.

[21]  Robert A. Grothe,et al.  An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P E Fraser,et al.  Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. , 2001, Journal of molecular biology.

[23]  A. Miranker,et al.  Islet amyloid polypeptide: identification of long-range contacts and local order on the fibrillogenesis pathway. , 2001, Journal of molecular biology.

[24]  M. Kirkitadze,et al.  Identification and characterization of key kinetic intermediates in amyloid beta-protein fibrillogenesis. , 2001, Journal of molecular biology.

[25]  A. Clark,et al.  Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. , 2001, Biochimica et biophysica acta.

[26]  Ehud Gazit,et al.  Analysis of the Minimal Amyloid-forming Fragment of the Islet Amyloid Polypeptide , 2001, The Journal of Biological Chemistry.

[27]  Christopher M. Dobson,et al.  Kinetic partitioning of protein folding and aggregation , 2002, Nature Structural Biology.

[28]  C. Dobson,et al.  Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases , 2002, Nature.

[29]  R. Nussinov,et al.  Stabilities and conformations of Alzheimer's β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10–35): Sequence effects , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Kapurniotu,et al.  Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. , 2002, Journal of molecular biology.

[31]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[32]  Ehud Gazit,et al.  A possible role for π‐stacking in the self‐assembly of amyloid fibrils , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  R. Nussinov,et al.  Molecular dynamics simulations of alanine rich β‐sheet oligomers: Insight into amyloid formation , 2002, Protein science : a publication of the Protein Society.

[34]  Ž. Eva Amyloid-fibril formation: Proposed mechanisms and relevance to conformational disease , 2002 .