Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics.

[1]  M. Neale,et al.  Quantitative Genetics , 2018, Population Genetics and Microevolutionary Theory.

[2]  C. Pieterse,et al.  Identification of a locus in arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. , 1999, Molecular plant-microbe interactions : MPMI.

[3]  R. Amasino,et al.  Natural allelic variation identifies new genes in the Arabidopsis circadian system. , 1999, The Plant journal : for cell and molecular biology.

[4]  G. Murphy,et al.  The small, the large and the wild: the value of comparison in plant genomics. , 1999, Trends in genetics : TIG.

[5]  T. Boller,et al.  A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[6]  R. Amasino,et al.  FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering , 1999, Plant Cell.

[7]  M. Koornneef,et al.  Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Davis,et al.  Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. , 1999, The Plant journal : for cell and molecular biology.

[9]  P. Robles,et al.  High-throughput genetic mapping in Arabidopsis thaliana , 1999, Molecular and General Genetics MGG.

[10]  B. Kunkel,et al.  Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J L Micol,et al.  Venation pattern formation in Arabidopsis thaliana vegetative leaves. , 1999, Developmental biology.

[12]  Maes,et al.  Plant tagnology. , 1999, Trends in plant science.

[13]  M. Pigliucci Ecological and evolutionary genetics of Arabidopsis , 1998 .

[14]  J. Cherry,et al.  Arabidopsis thaliana: a model plant for genome analysis. , 1998, Science.

[15]  M. Hauser,et al.  Generation of co-dominant PCR-based markers by duplex analysis on high resolution gels. , 1998, The Plant journal : for cell and molecular biology.

[16]  L. Liaubet,et al.  Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. , 1998, Molecular plant-microbe interactions : MPMI.

[17]  D. Hoisington,et al.  Marker-assisted selection: new tools and strategies , 1998 .

[18]  A. Peeters,et al.  GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. , 1998, Annual review of plant physiology and plant molecular biology.

[19]  T. Mitchell-Olds,et al.  The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. , 1998, Genetics.

[20]  G. Coupland,et al.  Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. , 1998, Genetics.

[21]  M Koornneef,et al.  Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. , 1998, The Plant journal : for cell and molecular biology.

[22]  J. Carrington,et al.  Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. , 1998, The Plant journal : for cell and molecular biology.

[23]  W. G. Hill,et al.  Selection with recurrent backcrossing to develop congenic lines for quantitative trait loci analysis. , 1998, Genetics.

[24]  M. Kearsey,et al.  QTL analysis in plants; where are we now? , 1998, Heredity.

[25]  L. A. Sawyer,et al.  Natural variation in a Drosophila clock gene and temperature compensation. , 1997, Science.

[26]  M. Yanovsky,et al.  The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome A signal transduction that correspond to very‐low‐fluence and high‐irradiance responses , 1997 .

[27]  R. Jansen,et al.  QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping , 1997, Heredity.

[28]  S. Somerville,et al.  Use of Arabidopsis recombinant inbred lines reveals a monogenic and a novel digenic resistance mechanism to Xanthomonas campestris pv campestris. , 1997, The Plant journal : for cell and molecular biology.

[29]  K. Feldmann,et al.  Epicuticular wax variation in ecotypes of Arabidopsis thaliana. , 1997, Phytochemistry.

[30]  J. Doebley,et al.  The evolution of apical dominance in maize , 1997, Nature.

[31]  K. Nakamura,et al.  Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for beta-amylase and on the accumulation of anthocyanin that are inducible by sugars. , 1997, The Plant journal : for cell and molecular biology.

[32]  P. Goldsbrough,et al.  Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci , 1997, Theoretical and Applied Genetics.

[33]  S. Gelvin,et al.  Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. , 1997, The Plant cell.

[34]  M. Yanovsky,et al.  The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissect two branches of phytochrome A signal transduction that correspond to very-low-fluence and high-irradiance responses. , 1997, The Plant journal : for cell and molecular biology.

[35]  T. Mitchell-Olds PLEIOTROPY CAUSES LONG‐TERM GENETIC CONSTRAINTS ON LIFE‐HISTORY EVOLUTION IN BRASSICA RAPA , 1996, Evolution; international journal of organic evolution.

[36]  A. Bleecker,et al.  An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. , 1996, Development.

[37]  D. Marshall,et al.  The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. , 1996, Genome.

[38]  R. Jansen Complex plant traits: Time for polygenic analysis , 1996 .

[39]  N. Young,et al.  The control of trichome spacing and number in Arabidopsis. , 1996, Development.

[40]  B. Kunkel,et al.  A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. , 1996, Trends in genetics : TIG.

[41]  T. Mitchell-Olds GENETIC CONSTRAINTS ON LIFE‐HISTORY EVOLUTION: QUANTITATIVE‐TRAIT LOCI INFLUENCING GROWTH AND FLOWERING IN ARABIDOPSIS THALIANA , 1996, Evolution; international journal of organic evolution.

[42]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[43]  D. Zamir,et al.  An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. , 1995, Genetics.

[44]  T. Mitchell-Olds The molecular basis of quantitative genetic variation in natural populations. , 1995, Trends in ecology & evolution.

[45]  T. Mitchell-Olds,et al.  Interval mapping of viability loci causing heterosis in Arabidopsis. , 1995, Genetics.

[46]  Jianhua Zhang,et al.  Responses to CO2 Enrichment by Two Genotypes of Arabidopsis thaliana Differing in their Sensitivity to Nutrient Availability , 1995 .

[47]  A. Murphy,et al.  A New Vertical Mesh Transfer Technique for Metal-Tolerance Studies in Arabidopsis (Ecotypic Variation and Copper-Sensitive Mutants) , 1995, Plant physiology.

[48]  C. Lister,et al.  Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana , 1995, Heredity.

[49]  R. Amasino,et al.  The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis , 1994 .

[50]  M. Koornneef,et al.  The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type , 1994 .

[51]  C. Lister,et al.  Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana , 1994, Heredity.

[52]  G. Sills,et al.  VARIANCE FOR WATER-USE EFFICIENCY AMONG , 1994 .

[53]  T. Altmann,et al.  8 Tissue Culture and Transformation , 1994 .

[54]  J. Palmer,et al.  1 Systematic Relationships of Arabidopsis: A Molecular and Morphological Perspective , 1994 .

[55]  C. Lister,et al.  Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana , 1993 .

[56]  D. Davies,et al.  Tissue culture and transformation. , 1993 .

[57]  S. Tanksley Mapping polygenes. , 1993, Annual review of genetics.

[58]  R. Scholl,et al.  Qualitative and quantitative genetic studies of Arabidopsis thaliana. , 1991, Genetics.

[59]  Lonnie W. Aarssen,et al.  The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae) , 1991 .

[60]  B. Burr,et al.  Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. , 1991, Trends in genetics : TIG.

[61]  B. Burr,et al.  Recombinant inbreds for molecular mapping in maize , 1991 .

[62]  G. Rédei Arabidopsis thaliana (L.) Heynh. A review of the genetics and biology. , 1970 .

[63]  David Briggs,et al.  Plant Variation and Evolution , 1970 .

[64]  J. Langridge,et al.  A Study of High Temperature Lesions in Arabidopsis Thaliana , 1959 .