On Korn’s inequality

The author first reviews the classical Korn inequality and its proof. Following recent works of S. Kesavan, P. Ciarlet, Jr., and the author, it is shown how the Korn inequality can be recovered by an entirely different proof. This new proof hinges on appropriate weak versions of the classical Poincaré and Saint-Venant lemma. In fine, both proofs essentially depend on a crucial lemma of J. L. Lions, recalled at the beginning of this paper.

[1]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[2]  J. Lions Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal , 1973 .

[3]  G. Stampacchia,et al.  I problemi al contorno per le equazioni differenziali di tipo ellittico , 1958 .

[4]  F. Rühs,et al.  J. L. Lions, Équations Différentielles Opérationnelles et Problèmes aux Limites. IX + 292 S. Berlin/Göttingen/Heidelberg 1961. Springer-Verlag. Preis geb. 64,— , 1962 .

[5]  Kurt Friedrichs,et al.  On the Boundary-Value Problems of the Theory of Elasticity and Korn's Inequality , 1947 .

[6]  H. Reinhard,et al.  Equations aux dérivées partielles , 1987 .

[7]  Luc Tartar,et al.  Topics in nonlinear analysis , 1978 .

[8]  J. Nédélec,et al.  Functional spaces for norton‐hoff materials , 1986 .

[9]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[10]  P. Ciarlet,et al.  ANOTHER APPROACH TO LINEARIZED ELASTICITY AND A NEW PROOF OF KORN'S INEQUALITY , 2005 .

[11]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[12]  Sorin Mardare Dedicated to Professor Philippe G. Ciarlet on his 70th birthday ON POINCARÉ AND DE RHAM'S THEOREMS , 2008 .

[13]  On the characterizations of matrix fields as linearized strain tensor fields , 2006 .

[14]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[17]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[18]  W. Borchers,et al.  On the equations rot v=g and div u=f with zero boundary conditions , 1990 .

[19]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[20]  On Poincaré's and J.L. Lions' lemmas , 2005 .

[21]  A. Korn Solution générale du problème d'équilibre dans la théorie de l'élasticité, dans le cas ou les efforts sont donnés à la surface , 1908 .

[22]  J. Lions Equations Differentielles Operationnelles , 1961 .