Multi-observation sensor resetting localization with ambiguous landmarks

Successful approaches to the robot localization problem include particle filters, which estimate non-parametric localization belief distributions. Particle filters are successful at tracking a robot’s pose, although they fare poorly at determining the robot’s global pose. The global localization problem has been addressed for robots that sense unambiguous visual landmarks with sensor resetting, by performing sensor-based resampling when the robot is lost. Unfortunately, for robots that make sparse, ambiguous and noisy observations, standard sensor resetting places new pose hypotheses across a wide region, in poses that may be inconsistent with previous observations. We introduce multi-observation sensor resetting (MOSR) to address the localization problem with sparse, ambiguous and noisy observations. MOSR merges observations from multiple frames to generate new hypotheses more effectively. We demonstrate experimentally on the NAO humanoid robots that MOSR converges more efficiently to the robot’s true pose than standard sensor resetting, and is more robust to systematic vision errors.

[1]  Michael Spranger,et al.  Making use of what you don't see: negative information in Markov localization , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[3]  Thomas Röfer,et al.  Entropy-Based Active Vision for a Humanoid Soccer Robot , 2010, RoboCup.

[4]  Manuela M. Veloso,et al.  CMPack: a complete software system for autonomous legged soccer robots , 2001, AGENTS '01.

[5]  Manuela M. Veloso,et al.  Depth camera based indoor mobile robot localization and navigation , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  Sven Behnke,et al.  Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization , 2012, RoboCup.

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  Kazuhiko Kawamura,et al.  Multi-Robot Systems: From Swarms to Intelligent Automata , 2002 .

[9]  David J. Fleet,et al.  People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008 .

[11]  Ben J. A. Kröse,et al.  Active Appearance-Based Robot Localization Using Stereo Vision , 2005, Auton. Robots.

[12]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[13]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[14]  Ben J. A. Kröse,et al.  Auxiliary particle filter robot localization from high-dimensional sensor observations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Luca Iocchi,et al.  A Comparative Analysis of Particle Filter Based Localization Methods , 2006, RoboCup.

[16]  Thomas Röfer,et al.  Optimizing Particle Filter Parameters for Self-localization , 2010, RoboCup.

[17]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[19]  Peter Stone,et al.  Practical Vision-Based Monte Carlo Localization on a Legged Robot , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[20]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[21]  Peter Stone,et al.  Negative information and line observations for Monte Carlo localization , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Dieter Fox,et al.  KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization , 2001, NIPS 2001.

[23]  Sen Zhang,et al.  Particle filter based outdoor robot localization using natural features extracted from laser scanners , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[24]  Manuela M. Veloso,et al.  WiFi localization and navigation for autonomous indoor mobile robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[25]  Emanuele Menegatti,et al.  Image-based Monte Carlo localisation with omnidirectional images , 2004, Robotics Auton. Syst..

[26]  José María Cañas,et al.  Localization of legged robots combining a fuzzy-Markov method and a population of extended Kalman filters , 2007, Robotics Auton. Syst..

[27]  Manuela M. Veloso,et al.  Corrective Gradient Refinement for mobile robot localization , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[29]  Manuela M. Veloso,et al.  Prioritized Multihypothesis Tracking by a Robot with Limited Sensing , 2009, EURASIP J. Adv. Signal Process..

[30]  Sanjiv Singh,et al.  Preliminary results in range-only localization and mapping , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[31]  Manuela M. Veloso,et al.  Multi-Fidelity Robotic Behaviors: Acting with Variable State Information , 2000, AAAI/IAAI.

[32]  Manuela M. Veloso,et al.  A real-time world model for multi-robot teams with high-latency communication , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[33]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[34]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[35]  Richard H. Middleton,et al.  Efficient Localization for Robot Soccer Using Pattern Matching , 2011, ISoLA Workshops.

[36]  Javier Nicolás Sánchez,et al.  Robust global localization using clustered particle filtering , 2002, AAAI/IAAI.

[37]  Brian Coltin,et al.  Vision-Based Cognition of a Humanoid Robot in Standard Platform Robot Soccer , 2010 .

[38]  Richard H. Middleton,et al.  Multiple Model Kalman Filters: A Localization Technique for RoboCup Soccer , 2009, RoboCup.

[39]  Manuela Veloso,et al.  DYNAMIC MULTI-ROBOT COORDINATION , 2003 .

[40]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[41]  James J. Little,et al.  σMCL: Monte-Carlo Localization for Mobile Robots with Stereo Vision , 2005, Robotics: Science and Systems.

[42]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[43]  Alessandro Saffiotti,et al.  Fuzzy landmark-based localization for a legged robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[44]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[45]  Dieter Fox,et al.  An experimental comparison of localization methods continued , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Wolfram Burgard,et al.  Monte Carlo localization in outdoor terrains using multilevel surface maps , 2008, J. Field Robotics.

[47]  H. Levent Akin,et al.  Localization with Non-unique Landmark Observations , 2010, RoboCup.

[48]  Oliver Urbann,et al.  Efficient Multi-hypotheses Unscented Kalman Filtering for Robust Localization , 2011, RoboCup.

[49]  Manuela M. Veloso,et al.  SSL-Vision: The Shared Vision System for the RoboCup Small Size League , 2009, RoboCup.

[50]  Manuela M. Veloso,et al.  Multi-humanoid world modeling in Standard Platform robot soccer , 2010, 2010 10th IEEE-RAS International Conference on Humanoid Robots.

[51]  Wolfram Burgard,et al.  Robust Monte-Carlo Localization Using Adaptive Likelihood Models , 2006, EUROS.

[52]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[53]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[54]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[55]  Thomas Röfer,et al.  Vision-based fast and reactive monte-carlo localization , 2003, ICRA.

[56]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[57]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[58]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[59]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[60]  Jason M. O'Kane,et al.  Probabilistic localization with a blind robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[61]  Çetin Meriçli,et al.  Practical Extensions to Vision-Based Monte Carlo Localization Methods for Robot Soccer Domain , 2005, RoboCup.

[62]  Sebastian Thrun,et al.  Map-Based Precision Vehicle Localization in Urban Environments , 2007, Robotics: Science and Systems.