The Development of a Randomised Unscented Kalman Filter

Abstract The paper deals with state estimation of nonlinear stochastic dynamic systems. Traditional filters providing local estimates of the states, such as the extended Kalman filter, unscented Kalman filter or the cubature Kalman filter, are based on approximations which lead to biased estimates of the state and measurement statistics. The aim of the paper is to propose a new local filter that utilises a randomised unscented transformation which is a special case of stochastic integration rules providing an unbiased estimate of an integral. The new filter provides estimates of higher quality than the traditional filters and renders a randomised version of the unscented Kalman filter. The proposed filter is illustrated in a numerical example.

[1]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[2]  Ondrej Straka,et al.  Adaptive choice of scaling parameter in derivative-free local filters , 2010, 2010 13th International Conference on Information Fusion.

[3]  Tor Steinar Schei,et al.  A finite-difference method for linearization in nonlinear estimation algorithms , 1997, Autom..

[4]  J. Dunik,et al.  Performance analysis of derivative-free filters , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[5]  John Monahan,et al.  Stochastic Integration Rules for Infinite Regions , 1998, SIAM J. Sci. Comput..

[6]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[7]  Torsten Söderström,et al.  Anticipative grid design in point-mass approach to nonlinear state estimation , 2002, IEEE Trans. Autom. Control..

[8]  T. Schei A finite-difference method for linearization in nonlinear estimation algorithms , 1998 .

[9]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[10]  Jindrich Duník,et al.  Derivative-free estimation methods: New results and performance analysis , 2009, Autom..

[11]  Herman Bruyninckx,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" [with authors' reply] , 2002, IEEE Trans. Autom. Control..

[12]  S Julier,et al.  Comment on "A new method for the nonlinear transformation of means and covariances in filters and estimators" - Reply , 2002 .

[13]  John F. Monahan,et al.  A stochastic algorithm for high-dimensional integrals over unbounded regions with Gaussian weight , 1999 .

[14]  Harold J. Kushner,et al.  A nonlinear filtering algorithm based on an approximation of the conditional distribution , 2000, IEEE Trans. Autom. Control..

[15]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[16]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[17]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[18]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[19]  Brendan M. Quine,et al.  A derivative-free implementation of the extended Kalman filter , 2006, Autom..