Statistical analysis of the Frisch scheme for identifying errors-in-variables systems

Several estimation methods have been proposed for identifying errors-in-variables systems, where both input and output measurements are corrupted by noise. One of the promising approaches is the so called Frisch scheme. This paper provides an accuracy analysis of the Frisch scheme applied to system identification. The estimates of the system parameters and the noise variances are shown to be asymptotically Gaussian distributed. An explicit expression for the covariance matrix of the asymptotic distribution is given as well. Numerical simulations support the theoretical results. A comparison with the Cramer-Rao lower bound is also given in examples, and it is shown that the Frisch scheme gives a performance close to the Cramer-Rao bound for large signal-to-noise ratios.

[1]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[2]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[3]  T. Söderström ON COMPUTING THE CRAMER-RAO BOUND AND COVARIANCE MATRICES FOR PEM ESTIMATES IN LINEAR STATE SPACE MODELS , 2006 .

[4]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[5]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[6]  Wayne A. Fuller,et al.  Measurement Error Models , 1988 .

[7]  Torsten Söderström,et al.  Computing the Cramer-Rao lower bound for noisy input output systems , 2000 .

[8]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[9]  Wei Xing Zheng,et al.  ACCURACY ANALYSIS OF BIAS-ELIMINATING LEAST SQUARES ESTIMATES FOR ERRORS-IN-VARIABLES IDENTIFICATION , 2006 .

[10]  Torsten Söderström,et al.  The Cramér-Rao lower bound for noisy input-output systems , 2000, Signal Process..

[11]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  Umberto Soverini,et al.  A New Criterion in EIV Identification and Filtering Applications , 2003 .

[14]  G. Stewart Introduction to matrix computations , 1973 .

[15]  Chun-Bo Feng,et al.  Unbiased parameter estimation of linear systems in the presence of input and output noise , 1989 .

[16]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..