Multitone Microwave Frequency Locking to a Noisy Cavity via Real-Time Feedback

,

[1]  J. Davis,et al.  Dynamical backaction evading magnomechanics , 2022, Physical Review B.

[2]  W. Wernsdorfer,et al.  Fano Interference in Microwave Resonator Measurements , 2022, Physical Review Applied.

[3]  J. Davis,et al.  Precision measurements of the zero temperature dielectric constant and density of liquid $^4$He , 2022, 2207.08852.

[4]  J. You,et al.  Mechanical Bistability in Kerr-modified Cavity Magnomechanics. , 2022, Physical review letters.

[5]  S. Mittal,et al.  Superconducting-qubit readout via low-backaction electro-optic transduction , 2022, Nature.

[6]  E. Jeffrey,et al.  Feedback Stabilization of the Resonant Frequency in a Tunable Microwave Cavity with Single-Photon Occupancy , 2022, Physical Review Applied.

[7]  C. Regal,et al.  Optomechanical Ground-State Cooling in a Continuous and Efficient Electro-Optic Transducer , 2021, Physical Review X.

[8]  T. J. Clark,et al.  Prototype superfluid gravitational wave detector , 2021, Physical Review D.

[9]  Amir H. Karamlou,et al.  Improving qubit coherence using closed-loop feedback , 2021, Nature Communications.

[10]  J. Davis,et al.  Dynamical Backaction Magnomechanics , 2021, Physical Review X.

[11]  B. H. LaRoque,et al.  Axion Dark Matter Experiment: Detailed design and operations. , 2020, The Review of scientific instruments.

[12]  J. Cole,et al.  Stability of superconducting resonators: Motional narrowing and the role of Landau-Zener driving of two-level defects , 2020, Science advances.

[13]  N. J. Engelsen,et al.  Thermal intermodulation noise in cavity-based measurements , 2020, Optica.

[14]  G. Steele,et al.  Photon-pressure strong coupling between two superconducting circuits , 2019, Nature Physics.

[15]  M. Blencowe,et al.  Frequency Fluctuations in Tunable and Nonlinear Microwave Cavities , 2019 .

[16]  D. Bouwmeester,et al.  Vibration isolation with high thermal conductance for a cryogen-free dilution refrigerator. , 2018, The Review of scientific instruments.

[17]  T. J. Clark,et al.  Cryogenic microwave filter cavity with a tunability greater than 5 GHz. , 2018, The Review of scientific instruments.

[18]  C. Kang,et al.  Vibration Mitigation for a Cryogen-Free Dilution Refrigerator for the AMoRE-Pilot Experiment , 2018, Journal of Low Temperature Physics.

[19]  D. Bouwmeester,et al.  High-Q nested resonator in an actively stabilized optomechanical cavity , 2017, 1701.04212.

[20]  M. Ataka,et al.  Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity , 2016 .

[21]  H. Tang,et al.  Cavity magnomechanics , 2015, Science Advances.

[22]  J. Teufel,et al.  Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. , 2015, Physical review letters.

[23]  Stefano Poletto,et al.  Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits , 2015, 1503.01637.

[24]  T. Oosterkamp,et al.  Atomic resolution scanning tunneling microscopy in a cryogen free dilution refrigerator at 15 mK. , 2013, The Review of scientific instruments.

[25]  K. Schwab,et al.  Optomechanical effects of two-level systems in a back-action evading measurement of micro-mechanical motion , 2013 .

[26]  A. Tzalenchuk,et al.  Pound-locking for characterization of superconducting microresonators. , 2011, The Review of scientific instruments.

[27]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[28]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[29]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[30]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[31]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[32]  J. P. Laboratory,et al.  Noise properties of superconducting coplanar waveguide microwave resonators , 2006, cond-mat/0609614.

[33]  Tal Carmon,et al.  Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators. , 2005, Optics express.

[34]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[35]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.

[36]  S. G. Douma,et al.  Delft University of Technology , 2009 .

[37]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .