Predictive Adaptation of Hybrid Monte Carlo with Bayesian Parametric Bandits
暂无分享,去创建一个
[1] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[2] D. Bertsekas. Projected Newton methods for optimization problems with simple constraints , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[3] A. Kennedy,et al. Hybrid Monte Carlo , 1988 .
[4] J. Mockus,et al. The Bayesian approach to global optimization , 1989 .
[5] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[6] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[7] H. Ishwaran. Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks , 1999 .
[8] H. Banks. Center for Research in Scientific Computationにおける研究活動 , 1999 .
[9] Gomes de Freitas,et al. Bayesian methods for neural networks , 2000 .
[10] Lingyu Chen,et al. Exploring Hybrid Monte Carlo in Bayesian Computation , 2000 .
[11] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[12] C. Robert,et al. Controlled MCMC for Optimal Sampling , 2001 .
[13] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[14] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[15] Nando de Freitas,et al. Robust Full Bayesian Learning for Radial Basis Networks , 2001, Neural Computation.
[16] G. Roberts,et al. Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .
[17] D. Finkel,et al. Direct optimization algorithm user guide , 2003 .
[18] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[19] Steve R. Gunn,et al. Result Analysis of the NIPS 2003 Feature Selection Challenge , 2004, NIPS.
[20] Radford M. Neal,et al. High Dimensional Classification with Bayesian Neural Networks and Dirichlet Diffusion Trees , 2006, Feature Extraction.
[21] E. Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[22] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[23] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[24] Thomas P. Hayes,et al. High-Probability Regret Bounds for Bandit Online Linear Optimization , 2008, COLT.
[25] Thomas J. Walsh,et al. Exploring compact reinforcement-learning representations with linear regression , 2009, UAI.
[26] G. Fort,et al. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.
[27] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[28] Andreas Krause,et al. Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.
[29] E. Saksman,et al. On the ergodicity of the adaptive Metropolis algorithm on unbounded domains , 2008, 0806.2933.
[30] Nando de Freitas,et al. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.
[31] Wei Chu,et al. A contextual-bandit approach to personalized news article recommendation , 2010, WWW '10.
[32] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[33] Adam D. Bull,et al. Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..
[34] Nando de Freitas,et al. Bayesian optimization for adaptive MCMC , 2011, 1110.6497.
[35] Nando de Freitas,et al. Portfolio Allocation for Bayesian Optimization , 2010, UAI.
[36] Kevin P. Murphy,et al. Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.
[37] David S. Leslie,et al. Optimistic Bayesian Sampling in Contextual-Bandit Problems , 2012, J. Mach. Learn. Res..
[38] Nando de Freitas,et al. Self-Avoiding Random Dynamics on Integer Complex Systems , 2011, TOMC.