Transposable elements and the evolution of regulatory networks

[1]  S. Grewal,et al.  Host genome surveillance for retrotransposons by transposon-derived proteins , 2008, Nature.

[2]  C. Casola,et al.  Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. , 2007, Molecular biology and evolution.

[3]  C. Feschotte,et al.  DNA transposons and the evolution of eukaryotic genomes. , 2007, Annual review of genetics.

[4]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[5]  M. Borodovsky,et al.  Evaluating the protein coding potential of exonized transposable element sequences , 2007, Biology Direct.

[6]  Rongcheng Lin,et al.  Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis , 2007, Science.

[7]  D. Haussler,et al.  Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53 , 2007, Proceedings of the National Academy of Sciences.

[8]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[9]  M. Low,et al.  Ancient Exaptation of a CORE-SINE Retroposon into a Highly Conserved Mammalian Neuronal Enhancer of the Proopiomelanocortin Gene , 2007, PLoS genetics.

[10]  Elodie Ghedin,et al.  Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in Leishmania , 2007, PLoS pathogens.

[11]  Cédric Feschotte,et al.  PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes. , 2007, Molecular biology and evolution.

[12]  A. Gentles,et al.  Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. , 2007, Genome research.

[13]  I. K. Jordan,et al.  Origin and Evolution of Human microRNAs From Transposable Elements , 2007, Genetics.

[14]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[15]  David Haussler,et al.  Thousands of human mobile element fragments undergo strong purifying selection near developmental genes , 2007, Proceedings of the National Academy of Sciences.

[16]  N. Rangaraj,et al.  Boundary Element-Associated Factor 32B Connects Chromatin Domains to the Nuclear Matrix , 2007, Molecular and Cellular Biology.

[17]  J. Mattick A new paradigm for developmental biology , 2007, Journal of Experimental Biology.

[18]  B. Papp,et al.  The Ancient mariner Sails Again: Transposition of the Human Hsmar1 Element by a Reconstructed Transposase and Activities of the SETMAR Protein on Transposon Ends , 2007, Molecular and Cellular Biology.

[19]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[20]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[21]  Tyson A. Clark,et al.  Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. , 2007, Genes & development.

[22]  Alex Andrianopoulos,et al.  Cis-Regulatory Elements in the Accord Retrotransposon Result in Tissue-Specific Expression of the Drosophila melanogaster Insecticide Resistance Gene Cyp6g1 , 2007, Genetics.

[23]  I. King Jordan,et al.  A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements , 2007, PloS one.

[24]  N. Rajewsky,et al.  The evolution of gene regulation by transcription factors and microRNAs , 2007, Nature Reviews Genetics.

[25]  C. A. Dunn,et al.  Repeated Recruitment of LTR Retrotransposons as Promoters by the Anti-Apoptotic Locus NAIP during Mammalian Evolution , 2006, PLoS genetics.

[26]  S. Grewal,et al.  Heterochromatin revisited , 2007, Nature Reviews Genetics.

[27]  N. Buisine,et al.  The Human SETMAR Protein Preserves Most of the Activities of the Ancestral Hsmar1 Transposase , 2006, Molecular and Cellular Biology.

[28]  L. Aravind,et al.  The natural history of the WRKY–GCM1 zinc fingers and the relationship between transcription factors and transposons , 2006, Nucleic acids research.

[29]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[30]  Parantu K. Shah,et al.  Computational characterization of multiple Gag-like human proteins. , 2006, Trends in genetics : TIG.

[31]  Vetle I. Torvik,et al.  Alu elements within human mRNAs are probable microRNA targets. , 2006, Trends in genetics : TIG.

[32]  J. Volff Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[33]  M. Feder,et al.  Heat-Shock Promoters: Targets for Evolution by P Transposable Elements in Drosophila , 2006, PLoS genetics.

[34]  David R. Westhead,et al.  Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication , 2006, Nucleic acids research.

[35]  E. Lander,et al.  A family of conserved noncoding elements derived from an ancient transposable element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  I. K. Jordan,et al.  Transposable element derived DNaseI-hypersensitive sites in the human genome , 2006, Biology Direct.

[37]  A. Iida,et al.  Vertebrate DNA transposon as a natural mutator: the medaka fish Tol2 element contributes to genetic variation without recognizable traces. , 2006, Molecular biology and evolution.

[38]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[39]  Eytan Domany,et al.  Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes , 2006, BMC Genomics.

[40]  E. Davidson The Regulatory Genome: Gene Regulatory Networks In Development And Evolution , 2006 .

[41]  M. Batzer,et al.  Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[43]  E. Lander,et al.  A large family of ancient repeat elements in the human genome is under strong selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Flavell,et al.  A hAT superfamily transposase recruited by the cereal grass genome , 2006, Molecular Genetics and Genomics.

[45]  Valer Gotea,et al.  Transposable elements as a significant source of transcription regulating signals. , 2006, Gene.

[46]  Michael Pheasant,et al.  Transposon-free regions in mammalian genomes. , 2005, Genome research.

[47]  Douglas R. Hoen,et al.  MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. , 2005, Molecular biology and evolution.

[48]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[49]  C. A. Dunn,et al.  Impact of transposable elements on the evolution of mammalian gene regulation , 2005, Cytogenetic and Genome Research.

[50]  D. Landsman,et al.  Transposable elements donate lineage-specific regulatory sequences to host genomes , 2005, Cytogenetic and Genome Research.

[51]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[52]  S. Wessler,et al.  DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs , 2005, Nucleic acids research.

[53]  H. Quesneville,et al.  Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. , 2005, Molecular biology and evolution.

[54]  M. Feder,et al.  Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. , 2005, Molecular biology and evolution.

[55]  P. Bork,et al.  Protein coding potential of retroviruses and other transposable elements in vertebrate genomes , 2005, Nucleic acids research.

[56]  John F. Y. Brookfield,et al.  The ecology of the genome — mobile DNA elements and their hosts , 2005, Nature Reviews Genetics.

[57]  A. Evsikov,et al.  Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. , 2004, Developmental cell.

[58]  Lin He,et al.  MicroRNAs: small RNAs with a big role in gene regulation , 2004, Nature Reviews Genetics.

[59]  J. Jurka,et al.  Harbinger transposons and an ancient HARBI1 gene derived from a transposase. , 2004, DNA and cell biology.

[60]  D. Begun,et al.  Strong selective sweep associated with a transposon insertion in Drosophila simulans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Brosius The Contribution of RNAs and Retroposition to Evolutionary Novelties , 2003, Genetica.

[62]  K. O'hare,et al.  The pogo transposable element family of Drosophila melanogaster , 1992, Molecular and General Genetics MGG.

[63]  D. Nouaud,et al.  Molecular domestication – more than a sporadic episode in evolution , 2004, Genetica.

[64]  David Haussler,et al.  Into the heart of darkness: large-scale clustering of human non-coding DNA , 2004, ISMB/ECCB.

[65]  J. V. Moran,et al.  Mobile elements and mammalian genome evolution. , 2003, Current opinion in genetics & development.

[66]  Ronald H. A. Plasterk,et al.  Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi , 2003, Nature.

[67]  Dixie L Mager,et al.  Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. , 2003, Trends in genetics : TIG.

[68]  A. Bashir,et al.  Conserved noncoding sequences in the grasses. , 2003, Genome research.

[69]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[70]  David G. Harris,et al.  Conserved fragments of transposable elements in intergenic regions: evidence for widespread recruitment of MIR- and L2-derived sequences within the mouse and human genomes. , 2003, Genetical research.

[71]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[72]  P. Quail,et al.  The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. , 2003, The Plant journal : for cell and molecular biology.

[73]  Sophia Kossida,et al.  The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. , 2003, Trends in biochemical sciences.

[74]  G. Glazko,et al.  Origin of a substantial fraction of human regulatory sequences from transposable elements. , 2003, Trends in genetics : TIG.

[75]  Xun Gu,et al.  Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation. , 2002, Genome research.

[76]  N. Fedoroff,et al.  Inducible DNA Demethylation Mediated by the Maize Suppressor-mutator Transposon-Encoded TnpA Protein , 2002, The Plant Cell Online.

[77]  B. Charlesworth,et al.  S-element Insertions Are Associated with the Evolution of the Hsp70 Genes in Drosophila melanogaster , 2002, Current Biology.

[78]  E. Koonin,et al.  SWIM, a novel Zn-chelating domain present in bacteria, archaea and eukaryotes. , 2002, Trends in biochemical sciences.

[79]  D. Kwiatkowski,et al.  Evolution of a polymorphic regulatory element in interferon-gamma through transposition and mutation. , 2002, Molecular biology and evolution.

[80]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[81]  M. Lehmann,et al.  The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins , 2002, Development Genes and Evolution.

[82]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[83]  A. Wilkins The Evolution of Developmental Pathways , 2001 .

[84]  H. Robertson,et al.  Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. , 2001, Molecular biology and evolution.

[85]  J. Ortonne,et al.  Transposable B2 SINE elements can provide mobile RNA polymerase II promoters , 2001, Nature Genetics.

[86]  R. Kunze,et al.  Regulation of activator/dissociation transposition by replication and DNA methylation. , 2001, Genetics.

[87]  A maize MuDR transposon promoter shows limited autoregulation , 2001, Molecular Genetics and Genomics.

[88]  M. G. Kidwell,et al.  PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION , 2001, Evolution; international journal of organic evolution.

[89]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[90]  R. Breitling,et al.  Origin of the paired domain , 2000, Development Genes and Evolution.

[91]  L. Aravind The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. , 2000, Trends in biochemical sciences.

[92]  L. Girard,et al.  Regulatory changes as a consequence of transposon insertion. , 1999, Developmental genetics.

[93]  R. Durbin,et al.  Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. , 1997, Nucleic acids research.

[94]  R. Britten,et al.  Cases of ancient mobile element DNA insertions that now affect gene regulation. , 1996, Molecular phylogenetics and evolution.

[95]  S. Wessler,et al.  LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. , 1995, Current opinion in genetics & development.

[96]  G. Franz,et al.  Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[97]  P. Kavathas,et al.  Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene , 1993, Molecular and cellular biology.

[98]  D. O’brochta,et al.  The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Thomas W. Glover,et al.  A de novo Alu insertion results in neurofibromatosis type 1 , 1991, Nature.

[100]  J. Brosius,et al.  Retroposons--seeds of evolution. , 1991, Science.

[101]  C. Lister,et al.  Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus. , 1989, Developmental genetics.

[102]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[103]  R. Britten,et al.  Repetitive and Non-Repetitive DNA Sequences and a Speculation on the Origins of Evolutionary Novelty , 1971, The Quarterly Review of Biology.

[104]  R. Britten,et al.  Gene regulation for higher cells: a theory. , 1969, Science.

[105]  R. Britten,et al.  Repeated Sequences in DNA , 1968 .

[106]  R. Britten,et al.  Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. , 1968, Science.