On tightness of an entropic region outer bound for network coding and the edge removal property

In this work, we study the Yeung network coding entropic function outer bound and prove an equivalence relationship between its tightness and the edge removal problem. In addition, we derive an implicit characterization of the 0-error capacity region using restricted sets of entropic vectors.

[1]  Michael Langberg,et al.  Network coding: Is zero error always possible? , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[2]  Alex J. Grant,et al.  Network Coding Capacity Regions via Entropy Functions , 2012, IEEE Transactions on Information Theory.

[3]  Shirin Jalali,et al.  On the separation of lossy source-network coding and channel coding in wireline networks , 2010, 2010 IEEE International Symposium on Information Theory.

[4]  Alex J. Grant,et al.  Network coding capacity: A functional dependence bound , 2009, 2009 IEEE International Symposium on Information Theory.

[5]  Michael Langberg,et al.  On a capacity equivalence between network and index coding and the edge removal problem , 2013, 2013 IEEE International Symposium on Information Theory.

[6]  Zhen Zhang,et al.  An Implicit Characterization of the Achievable Rate Region for Acyclic Multisource Multisink Network Coding , 2012, IEEE Transactions on Information Theory.

[7]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[8]  Michael Langberg,et al.  Source coding for dependent sources , 2012, 2012 IEEE Information Theory Workshop.

[9]  Tracey Ho,et al.  On the power of cooperation: Can a little help a lot? , 2014, 2014 IEEE International Symposium on Information Theory.

[10]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[11]  Michael Langberg,et al.  A characterization of the capacity region for network coding with dependent sources , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[12]  Alex J. Grant,et al.  On capacity regions of non-multicast networks , 2010, 2010 IEEE International Symposium on Information Theory.

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Michael Langberg,et al.  On an equivalence of the reduction of k-unicast to 2-unicast capacity and the edge removal property , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[15]  Lihua Song,et al.  Zero-error network coding for acyclic network , 2003, IEEE Trans. Inf. Theory.