Excluded-volume effects in the diffusion of hard spheres.

Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples.

[1]  O. Flomenbom,et al.  On single-file and less dense processes , 2008, 0802.1516.

[2]  Pierre Degond,et al.  Congestion in a Macroscopic Model of Self-driven Particles Modeling Gregariousness , 2009, 0908.1817.

[3]  C. Santangelo,et al.  Diffusion and binding of finite-size particles in confined geometries. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Rudolf Klein,et al.  Self-diffusion of spherical Brownian particles with hard-core interaction , 1982 .

[5]  A. Minton,et al.  Tracer diffusion of globular proteins in concentrated protein solutions. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[7]  J. Kondev,et al.  Lattice model of diffusion-limited bimolecular chemical reactions in confined environments. , 2009, Physical review letters.

[8]  Matthew J. Simpson,et al.  Multi-species simple exclusion processes , 2009 .

[9]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[10]  Clustering in anomalous files of independent particles , 2011, 1103.4082.

[11]  Arun Yethiraj,et al.  Crowding effects on association reactions at membranes. , 2010, Biophysical journal.

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  Bruce J. Ackerson,et al.  Correlations for dilute hard core suspensions , 1982 .

[14]  R. Mazo,et al.  Brownian Motion: Fluctuations, Dynamics, and Applications , 2002 .

[15]  G. Batchelor,et al.  Brownian diffusion of particles with hydrodynamic interaction , 1976, Journal of Fluid Mechanics.

[16]  P. Mazur,et al.  Self-diffusion of spheres in a concentrated suspension , 1983 .

[17]  Guy Theraulaz,et al.  Self-Organization in Biological Systems , 2001, Princeton studies in complexity.

[18]  M. Holmes Introduction to Perturbation Methods , 1995 .

[19]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[20]  B. U. Felderhof,et al.  Diffusion of interacting Brownian particles , 1978 .

[21]  José A. Carrillo,et al.  Volume effects in the Keller-Segel model : energy estimates preventing blow-up , 2006 .

[22]  S. Saxena Devolatilization and combustion characteristics of coal particles , 1990 .

[23]  Granular gases: dynamics and collective effects , 2004, cond-mat/0411435.

[24]  L. Lizana,et al.  Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[27]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Andreas Schadschneider,et al.  Traffic flow: a statistical physics point of view , 2002 .

[29]  O. Flomenbom Dynamics of heterogeneous hard spheres in a file. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Harel Weinstein,et al.  Toward realistic modeling of dynamic processes in cell signaling: quantification of macromolecular crowding effects. , 2007, The Journal of chemical physics.

[31]  朱克勤 Journal of Fluid Mechanics创刊50周年 , 2006 .

[32]  P. Strating,et al.  Brownian Dynamics Simulation of a Hard-Sphere Suspension , 1999 .

[33]  Martin Burger,et al.  Nonlinear Cross-Diffusion with Size Exclusion , 2010, SIAM J. Math. Anal..