Bone Marrow Lesions in Knee Osteoarthritis: Regional Differences in Tibial Subchondral Bone Microstructure and their Association with Cartilage Degeneration.

[1]  K. Reynolds,et al.  Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis. , 2018, Osteoarthritis and cartilage.

[2]  X. Guo,et al.  Subchondral Trabecular Rod Loss and Plate Thickening in the Development of Osteoarthritis , 2018, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[3]  Egon Perilli,et al.  Systematic mapping of the subchondral bone 3D microarchitecture in the human tibial plateau: Variations with joint alignment , 2017, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  Kate A Robson Brown,et al.  Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis , 2016, International journal of molecular sciences.

[5]  Simo Saarakkala,et al.  Association between subchondral bone structure and osteoarthritis histopathological grade , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[6]  Xu Cao,et al.  Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF‐β signaling , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[7]  W. Lu,et al.  Subchondral trabecular rod loss and trabecular plate stiffening precedes articular cartilage damages in osteoarthritis , 2016 .

[8]  F. Cicuttini,et al.  Bone marrow lesions detected by specific combination of MRI sequences are associated with severity of osteochondral degeneration , 2016, Arthritis Research & Therapy.

[9]  T. Aoyama,et al.  Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis. , 2016, Osteoarthritis and cartilage.

[10]  C. Ohlsson,et al.  Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone , 2015, Front. Endocrinol..

[11]  J. Babb,et al.  7T MRI detects deterioration in subchondral bone microarchitecture in subjects with mild knee osteoarthritis as compared with healthy controls , 2015, Journal of magnetic resonance imaging : JMRI.

[12]  Changqing Zhang,et al.  Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes , 2013, Arthritis Research & Therapy.

[13]  J. Raynauld,et al.  Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss , 2013, Annals of the rheumatic diseases.

[14]  Soon-Chul Choi,et al.  The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone , 2013, Imaging science in dentistry.

[15]  M. Cohen-Solal,et al.  Animal models of osteoarthritis for the understanding of the bone contribution. , 2013, BoneKEy reports.

[16]  W A Kalender,et al.  Bone marrow lesions identified by MRI in knee osteoarthritis are associated with locally increased bone mineral density measured by QCT. , 2013, Osteoarthritis and cartilage.

[17]  W. Lu,et al.  Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis. , 2013, Osteoarthritis and cartilage.

[18]  L. Price,et al.  Bone marrow lesions are associated with altered trabecular morphometry. , 2012, Osteoarthritis and cartilage.

[19]  David B. Burr,et al.  Bone remodelling in osteoarthritis , 2012, Nature Reviews Rheumatology.

[20]  L. Laslett,et al.  Zoledronic acid reduces knee pain and bone marrow lesions over 1 year: a randomised controlled trial , 2012, Annals of the rheumatic diseases.

[21]  Egon Perilli,et al.  Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis , 2011, Arthritis research & therapy.

[22]  H Weinans,et al.  In early OA, thinning of the subchondral plate is directly related to cartilage damage: results from a canine ACLT-meniscectomy model. , 2010, Osteoarthritis and cartilage.

[23]  S. Goldring,et al.  Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis , 2010, Annals of the New York Academy of Sciences.

[24]  M. Ding Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues , 2010, Acta orthopaedica. Supplementum.

[25]  Flavia Cicuttini,et al.  Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis , 2009, Annals of the rheumatic diseases.

[26]  Xiaojuan Li,et al.  Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. , 2008, Osteoarthritis and cartilage.

[27]  Roger C. Haut,et al.  Tibiofemoral Contact Pressures and Osteochondral Microtrauma during Anterior Cruciate Ligament Rupture Due to Excessive Compressive Loading and Internal Torque of the Human Knee , 2008, The American journal of sports medicine.

[28]  D. English,et al.  Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. , 2008, Rheumatology.

[29]  R. Maciewicz,et al.  Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized , 2009, Arthritis research & therapy.

[30]  J. Lang,et al.  MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. , 2007, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[31]  F Peyrin,et al.  Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. , 2006, Osteoarthritis and cartilage.

[32]  Ali Guermazi,et al.  Bone marrow lesions in the knee are associated with increased local bone density. , 2005, Arthritis and rheumatism.

[33]  M. Libicher,et al.  Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging , 2005, European Radiology.

[34]  Ming Ding,et al.  Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. , 2005, Bone.

[35]  D. Holdsworth,et al.  Ex vivo characterization of articular cartilage and bone lesions in a rabbit ACL transection model of osteoarthritis using MRI and micro-CT. , 2004, Osteoarthritis and cartilage.

[36]  Dragica Bobinac,et al.  Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. , 2003, Bone.

[37]  Sharmila Majumdar,et al.  MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[38]  T. Spector,et al.  Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. , 2002, Arthritis and rheumatism.

[39]  M. Hanes,et al.  A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis. , 2002, Osteoarthritis and cartilage.

[40]  L. Kazis,et al.  The Association of Bone Marrow Lesions with Pain in Knee Osteoarthritis , 2001, Annals of Internal Medicine.

[41]  Haruo Tsuji,et al.  Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: A histological and histomorphometric study , 1997, Microscopy research and technique.

[42]  A Odgaard,et al.  Three-dimensional methods for quantification of cancellous bone architecture. , 1997, Bone.

[43]  U. Wyss,et al.  Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. , 1995, Bone.

[44]  J. Parvizi,et al.  Identifying Patient-Specific Pathology in Osteoarthritis Development Based on MicroCT Analysis of Subchondral Trabecular Bone. , 2016, The Journal of arthroplasty.

[45]  S. Majumdar,et al.  Bone and cartilage demonstrate changes localized to bone marrow edema-like lesions within osteoarthritic knees. , 2013, Osteoarthritis and cartilage.

[46]  H Weinans,et al.  Quantification of subchondral bone changes in a murine osteoarthritis model using micro-CT. , 2006, Biorheology.