Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part II: Algorithms for the Moore-Penrose pseudoinverse
暂无分享,去创建一个
[1] Carlos A. Felippa,et al. The construction of free–free flexibility matrices as generalized stiffness inverses , 1998 .
[2] Editors , 1986, Brain Research Bulletin.
[3] Leszek Demkowicz,et al. A fully automatic hp-adaptivity for elliptic PDEs in three dimensions , 2007 .
[4] M. Berezhnyya,et al. Continuum limit for three-dimensional mass-spring networks and discrete Korn ’ s inequality , 2005 .
[5] I︠u︡. E. Boi︠a︡rint︠s︡ev,et al. Methods of Solving Singular Systems of Ordinary Differential Equations , 1992 .
[6] Maciej Paszyński,et al. On the Modeling of Step-and-Flash Imprint Lithography using Molecular Statics Models , 2005 .
[7] Guillaume Rateau,et al. The Arlequin method as a flexible engineering design tool , 2005 .
[8] P. Donato,et al. An introduction to homogenization , 2000 .
[9] William J. Dauksher,et al. Effects of etch barrier densification on step and flash imprint lithography , 2005 .
[10] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[11] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[12] Doron Levy,et al. On Wavelet-Based Numerical Homogenization , 2005, Multiscale Model. Simul..
[13] I. Babuska,et al. The finite element method and its reliability , 2001 .
[14] Ronald E. Miller,et al. The Quasicontinuum Method: Overview, applications and current directions , 2002 .
[15] K Schulten,et al. VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.
[16] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[17] Todd C. Bailey,et al. Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers , 2001 .
[18] Leszek Demkowicz,et al. Multiscale modeling using goal-oriented adaptivity and numerical homogenization. Part I: Mathematical formulation and numerical results , 2012 .
[19] Todd Arbogast,et al. Numerical Subgrid Upscaling of Two-Phase Flow in Porous Media , 2000 .
[20] Maciej Paszyński,et al. Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .
[21] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .
[22] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[23] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[24] A. Berman,et al. Cones and Iterative Methods for Best Least Squares Solutions of Linear Systems , 1974 .
[25] R. Penrose. A Generalized inverse for matrices , 1955 .
[26] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[27] T. Coleman,et al. Large-Scale Optimization with Applications : Part III: Molecular Structure and Optimization , 1997 .
[28] A. N. Tikhonov,et al. REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .
[29] A. Charnes,et al. Contributions to the Theory of Generalized Inverses , 1963 .
[30] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[31] Mike Miller,et al. Step and flash imprint lithography template fabrication for emerging market applications , 2007, Photomask Japan.
[32] M. Zuhair Nashed,et al. Perturbations and Approximations for Generalized Inverses and Linear Operator Equations , 1976 .
[33] Timothy A. Davis,et al. Multifrontral multithreaded rank-revealing sparse QR factorization , 2009, Combinatorial Scientific Computing.
[34] C. Grant Willson,et al. Kinetic parameters for step and flash imprint lithography photopolymerization , 2006 .
[35] Tongxing Lu,et al. Solution of the matrix equation AX−XB=C , 2005, Computing.
[36] V. Sima,et al. Solving linear matrix equations with SLICOT , 2003, 2003 European Control Conference (ECC).
[37] J. Tinsley Oden,et al. On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .
[38] Bernard Choi,et al. Step and flash imprint lithography: a new approach to high-resolution patterning , 1999, Advanced Lithography.
[39] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[40] Qingling Zhang,et al. Some geometric properties of Lyapunov equation and LTI system , 2001, Autom..
[41] L. Demkowicz. One and two dimensional elliptic and Maxwell problems , 2006 .
[42] S. Spagnolo,et al. Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore , 1967 .
[43] Gene H. Golub,et al. Matrix computations , 1983 .
[44] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[45] Stephan Knapek,et al. Matrix-Dependent Multigrid Homogenization for Diffusion Problems , 1998, SIAM J. Sci. Comput..
[46] M. Z. Nashed,et al. Annotated Bibliography on Generalized Inverses and Applications , 1976 .
[47] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[48] Yi Wei,et al. Mesoscale modeling for SFIL simulating polymerization kinetics and densification , 2004, SPIE Advanced Lithography.
[49] J. Oden,et al. Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .
[50] C. Grant Willson,et al. Study of the kinetics of step and flash imprint lithography photopolymerization , 2005 .
[51] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[53] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[54] J. J. Moré,et al. ISSUES IN LARGE-SCALE GLOBAL MOLECULAR OPTIMIZATION , 1997 .
[55] J. Tinsley Oden,et al. Adaptive multiscale modeling of polymeric materials using goal-oriented error estimation, arlequin coupling, and goals algorithms , 2008 .
[56] Richard H. Byrd,et al. Global Optimization For Molecular Clusters Using A New Smoothing Approach , 2000, J. Glob. Optim..
[57] Athanasios C. Antoulas,et al. Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.
[58] Todd C. Bailey,et al. Step and Flash Imprint Lithography: An Efficient Nanoscale Printing Technology , 2002 .
[59] Timothy A. Davis,et al. Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization , 2011, TOMS.
[60] Leszek Demkowicz,et al. Adaptive methods for problems in solid and fluid mechanics , 1986 .
[61] U. Hornung. Homogenization and porous media , 1996 .
[62] E Weinan,et al. Some Recent Progress in Multiscale Modeling , 2004 .
[63] Lois Curfman McInnes,et al. TAO users manual. , 2003 .
[64] J. Ericksen. The Cauchy and Born Hypotheses for Crystals. , 1983 .
[65] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[66] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .