Path-entangled photon sources on nonlinear chips

Abstract Photon entanglement has a range of applications from secure communication to the tests of quantum mechanics. Utilizing optical nonlinearity for the generation of entangled photons remains the most widely used approach due to its quality and simplicity. The on-chip integration of entangled light sources has enabled the increase of complexity and enhancement of stability compared to bulk optical implementations. Entanglement over different optical paths is uniquely suited for photonic chips, since waveguides are typically optimized for particular wavelength and polarization, making polarization- and frequency-entanglement less practical. In this review we focus on the latest developments in the field of on-chip nonlinear path-entangled photon sources. We provide a review of recent implementations and compare various approaches to tunability, including thermo-optical, electro-optical and all-optical tuning. We also discuss a range of important technical issues, in particular the on-chip separation of the pump and generated entangled photons. Finally, we review different quality control methods, including on-chip quantum tomography and recently discovered classical-quantum analogy that allows to characterize entangled photon sources by performing simple nonlinear measurements in the classical regime.

[1]  W. Sohler,et al.  Bandstructure measurement in nonlinear optical waveguide arrays , 2013 .

[2]  L. Chrostowski,et al.  Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process. , 2012, Optics express.

[3]  A. Schreiber,et al.  Spatio-spectral characteristics of parametric down-conversion in waveguide arrays , 2013, 1305.6806.

[4]  Stefan Nolte,et al.  Arbitrary photonic wave plate operations on-chip: Realizing Hadamard and Pauli-X gates for polarization encoded qubits , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[5]  C. M. Natarajan,et al.  Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. , 2012, Optics express.

[6]  M. Sorel,et al.  Ultra-low power generation of twin photons in a compact silicon ring resonator. , 2012, Optics express.

[7]  Michael J. Strain,et al.  Micrometer-scale integrated silicon source of time-energy entangled photons , 2014, 1409.4881.

[8]  Roberto Morandotti,et al.  Integrated frequency comb source of heralded single photons. , 2014, Optics express.

[9]  D. Leykam,et al.  Lattice topology and spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays , 2015, 1505.04850.

[10]  Sergei P. Kulik,et al.  Physical foundations of quantum electronics , 2011 .

[11]  K. Thyagarajan,et al.  Electro-optically switchable spatial-mode entangled photon pairs using a modified Mach-Zehnder interferometer. , 2012, Optics letters.

[12]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[13]  C. M. Natarajan,et al.  Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits , 2012, 1201.6537.

[14]  Andrey A. Sukhorukov,et al.  Generation of orbital-angular-momentum-entangled biphotons in triangular quadratic waveguide arrays , 2013 .

[15]  Effect of scattering loss on connections between classical and quantum processes in second-order nonlinear waveguides. , 2014, Optics letters.

[16]  I. Deutsch,et al.  Quantum process tomography of unitary and near-unitary maps , 2014, 1404.2877.

[17]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[18]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[19]  Aephraim M. Steinberg,et al.  Characterizing an entangled-photon source with classical detectors and measurements , 2014, 1412.4134.

[20]  A two-channel source of spectrally degenerate polarization entangled states on chip , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[21]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[22]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[23]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[24]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[25]  A fully guided-wave approach to the generation and detection of squeezing at a telecom wavelength , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[26]  Aephraim M. Steinberg,et al.  Stimulated emission tomography , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[27]  A. Sukhorukov,et al.  Generation of Photon-Plasmon Quantum States in Nonlinear Hyperbolic Metamaterials. , 2016, Physical review letters.

[28]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[29]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[30]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[31]  S. Nolte,et al.  Biphoton generation in quadratic waveguide arrays: A classical optical simulation , 2012, Scientific Reports.

[32]  D. Ostrowsky,et al.  On the genesis and evolution of Integrated Quantum Optics , 2011, 1108.3162.

[33]  Igor Jex,et al.  Dual-path source engineering in integrated quantum optics , 2015, 1505.01416.

[34]  Anthony Laing,et al.  Testing foundations of quantum mechanics with photons , 2014, Nature Physics.

[35]  Single-photon spontaneous parametric down-conversion in quadratic nonlinear waveguide arrays , 2014 .

[36]  A. Sukhorukov,et al.  Effect of loss on photon-pair generation in nonlinear waveguide arrays , 2014, 1401.7070.

[37]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[38]  R. Rangel-Rojo,et al.  Ultrabroadband photon pair preparation by spontaneous four-wave mixing in a dispersion-engineered optical fiber , 2008, 0810.1333.

[39]  B. Eggleton,et al.  CMOS-compatible photonic devices for single-photon generation , 2016 .

[40]  Yuri S. Kivshar,et al.  Generation of Nonclassical Biphoton States through Cascaded Quantum Walks on a Nonlinear Chip , 2014 .

[41]  Dragomir N Neshev,et al.  Spontaneous parametric down-conversion and quantum walks in arrays of quadratic nonlinear waveguides. , 2012, Physical review letters.

[42]  W. Sohler,et al.  Temporal dynamics of spatially localized waves in quadratic nonlinear waveguide arrays , 2014 .

[43]  B. Eggleton,et al.  Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. , 2012, Optics letters.

[44]  Thomas Pertsch,et al.  Tunable generation of entangled photons in a nonlinear directional coupler , 2015, 1507.03321.

[45]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[46]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[49]  Ivan Favero,et al.  Photon pair sources in AlGaAs: from electrical injection to quantum state engineering , 2015 .

[50]  Simon Gross,et al.  Laser written circuits for quantum photonics , 2015 .

[51]  G. Agrawal,et al.  Silicon waveguides for creating quantum-correlated photon pairs. , 2006, Optics letters.

[52]  R. Ricken,et al.  Spectral pulse transformations and phase transitions in quadratic nonlinear waveguide arrays. , 2011, Optics express.

[53]  B J Eggleton,et al.  Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides. , 2010, Optics express.

[54]  Benjamin J. Eggleton,et al.  Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[55]  Sergei P. Kulik,et al.  Infrared spectroscopy with visible light , 2016 .

[56]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[57]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[58]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[59]  James G. Titchener,et al.  Generation of photons with all-optically-reconfigurable entanglement in integrated nonlinear waveguides , 2014, 1411.0448.

[60]  Dragomir N Neshev,et al.  Photon-pair generation in arrays of cubic nonlinear waveguides. , 2012, Optics express.

[61]  M. Teich,et al.  Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate. , 2010, Optics express.

[62]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[63]  A. Penin,et al.  Characterization of aperiodic domain structure in lithium niobate by spontaneous parametric down-conversion spectroscopy , 2015 .

[64]  Masahide Sasaki,et al.  Efficient generation of twin photons at telecom wavelengths with 2.5 GHz repetition-rate-tunable comb laser , 2014, Scientific Reports.

[65]  Roberto Morandotti,et al.  Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip , 2015, Nature Communications.

[66]  Giuseppe Vallone,et al.  Multipath entanglement of two photons. , 2008, Physical review letters.

[67]  James G. Titchener,et al.  Two-photon tomography using on-chip quantum walks. , 2016, Optics letters.

[68]  J. Sipe,et al.  Spontaneous parametric downconversion in waveguides: what's loss got to do with it? , 2014, 1407.4219.

[69]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[70]  C. Roeloffzen,et al.  Compact and reconfigurable silicon nitride time-bin entanglement circuit , 2015, 1506.02758.

[71]  John E. Sipe,et al.  High‐resolution spectral characterization of two photon states via classical measurements , 2014 .

[72]  Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide. , 2014, Optics letters.

[73]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[74]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[75]  William Plowden The Compact , 2003 .

[76]  A. Sukhorukov,et al.  Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures. , 2014, Optics letters.

[77]  Vincenzo Savona,et al.  A compact, integrated silicon device for the generation of spectrally-filtered, pair-correlated photons , 2016 .

[78]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[79]  Roberto Morandotti,et al.  CMOS-compatible, multiplexed source of heralded photon pairs: towards integrated quantum combs , 2014 .

[80]  G. Vallone,et al.  Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. , 2009, Physical review letters.

[81]  Masahide Sasaki,et al.  Passive high-extinction integrated photonic filters for silicon quantum photonics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[82]  Stefan Nolte,et al.  Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits , 2014, Scientific Reports.

[83]  D. Neshev,et al.  Temporal dynamics of all-optical switching in quadratic nonlinear directional couplers , 2012 .

[84]  A. Gatti,et al.  Dimensionality of the spatiotemporal entanglement of parametric down-conversion photon pairs , 2012, 1207.6932.

[85]  Werner Vogel,et al.  Harnessing click detectors for the genuine characterization of light states , 2016, Scientific Reports.

[86]  Marc Savanier,et al.  Controlling the spectrum of photons generated on a silicon nanophotonic chip , 2014, Nature Communications.

[87]  Robert Fickler,et al.  Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits , 2012 .

[88]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[89]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[90]  Ivan Favero,et al.  Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons , 2015, 1507.05558.

[91]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[92]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[93]  Fabio Sciarrino,et al.  Rotated waveplates in integrated waveguide optics , 2014, Nature Communications.

[94]  Yonina C. Eldar,et al.  Sparsity-based recovery of three-photon quantum states from two-fold correlations , 2016 .

[95]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[96]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[97]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[98]  A. Politi,et al.  Manipulation of multiphoton entanglement in waveguide quantum circuits , 2009, 0911.1257.

[99]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[100]  Peter D. Drummond,et al.  The Quantum Theory of Nonlinear Optics , 2014 .

[101]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.