Minimum-cost coverage of point sets by disks

We consider a class of geometric facility location problems in which the goal is to determine a set <i>X</i> of disks given by their centers <i>(t<sub>j</sub>)</i> and radii <i>(r<sub>j</sub>)</i> that cover a given set of demand points <i>Y∈R</i><sup>2</sup> at the smallest possible cost. We consider cost functions of the form Ε<i><sub>j</sub>f(r<sub>j</sub>)</i>, where <i>f(r)=r</i><sup>α</sup> is the cost of transmission to radius <i>r</i>. Special cases arise for α=1 (sum of radii) and α=2 (total area); power consumption models in wireless network design often use an exponent α>2. Different scenarios arise according to possible restrictions on the transmission centers <i>t<sub>j</sub></i>, which may be constrained to belong to a given discrete set or to lie on a line, etc.We obtain several new results, including (a) exact and approximation algorithms for selecting transmission points <i>t<sub>j</sub></i> on a given line in order to cover demand points <i>Y∈R</i><sup>2</sup>; (b) approximation algorithms (and an algebraic intractability result) for selecting an optimal line on which to place transmission points to cover <i>Y</i>; (c) a proof of NP-hardness for a discrete set of transmission points in <i>R<sup>2</sup></i> and any fixed α>1; and (d) a polynomial-time approximation scheme for the problem of computing a <i>minimum cost covering tour</i> (MCCT), in which the total cost is a linear combination of the transmission cost for the set of disks and the length of a tour/path that connects the centers of the disks.

[1]  Sándor P. Fekete,et al.  Searching with an autonomous robot , 2004, SCG '04.

[2]  John Hershberger,et al.  Minimizing the Sum of Diameters Efficiently , 1992, Comput. Geom..

[3]  Teofilo F. Gonzalez,et al.  Covering a Set of Points in Multidimensional Space , 1991, Inf. Process. Lett..

[4]  David Peleg,et al.  Polynomial time approximation schemes for base station coverage with minimum total radii , 2005, Comput. Networks.

[5]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[6]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[7]  Sándor P. Fekete,et al.  Online Searching with an Autonomous Robot , 2004, WAFR.

[8]  Wolfgang Maass,et al.  Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.

[9]  Sándor P. Fekete,et al.  Online Searching with an Autonomous Robot , 2004, WAFR.

[10]  Vittorio Bilò,et al.  Geometric Clustering to Minimize the Sum of Cluster Sizes , 2005, ESA.

[11]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[12]  Satish Rao,et al.  Approximation schemes for Euclidean k-medians and related problems , 1998, STOC '98.

[13]  Joseph S. B. Mitchell,et al.  Approximation algorithms for TSP with neighborhoods in the plane , 2001, SODA '01.

[14]  Klaus Jansen,et al.  Polynomial-Time Approximation Schemes for Geometric Intersection Graphs , 2005, SIAM J. Comput..

[15]  S. Rao Kosaraju Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms , 2001 .

[16]  Chandrajit L. Bajaj,et al.  Proving Geometric Algorithm Non-Solvability: An Application of Factoring Polynomials , 1986, J. Symb. Comput..

[17]  Luzius D. Meisser On the Power Assignment Problem in Radio Networks , 2005 .

[18]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..

[19]  Esther M. Arkin,et al.  Angewandte Mathematik Und Informatik Universit at Zu K Oln Approximation Algorithms for Lawn Mowing and Milling Ss Andor P.fekete Center for Parallel Computing Universitt at Zu Kk Oln D{50923 Kk Oln Germany Approximation Algorithms for Lawn Mowing and Milling , 2022 .

[20]  Rina Panigrahy,et al.  Clustering to minimize the sum of cluster diameters , 2001, STOC '01.

[21]  J. Rotman Advanced Modern Algebra , 2002 .

[22]  Friedrich Eisenbrand,et al.  Energy-aware stage illumination , 2005, Int. J. Comput. Geom. Appl..

[23]  Esther M. Arkin,et al.  Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..