Minimum-cost coverage of point sets by disks
暂无分享,去创建一个
Esther M. Arkin | Joseph S. B. Mitchell | Sándor P. Fekete | Helmut Alt | Hervé Brönnimann | Jeff Erickson | Christian Knauer | Jonathan Lenchner | Kim Whittlesey | Joseph B. M. Mitchell | H. Alt | E. Arkin | S. Fekete | J. Lenchner | Jeff Erickson | Kim Whittlesey | H. Brönnimann | Christian Knauer
[1] Sándor P. Fekete,et al. Searching with an autonomous robot , 2004, SCG '04.
[2] John Hershberger,et al. Minimizing the Sum of Diameters Efficiently , 1992, Comput. Geom..
[3] Teofilo F. Gonzalez,et al. Covering a Set of Points in Multidimensional Space , 1991, Inf. Process. Lett..
[4] David Peleg,et al. Polynomial time approximation schemes for base station coverage with minimum total radii , 2005, Comput. Networks.
[5] Michael T. Goodrich,et al. Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..
[6] Micha Sharir,et al. Efficient algorithms for geometric optimization , 1998, CSUR.
[7] Sándor P. Fekete,et al. Online Searching with an Autonomous Robot , 2004, WAFR.
[8] Wolfgang Maass,et al. Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.
[9] Sándor P. Fekete,et al. Online Searching with an Autonomous Robot , 2004, WAFR.
[10] Vittorio Bilò,et al. Geometric Clustering to Minimize the Sum of Cluster Sizes , 2005, ESA.
[11] Joseph S. B. Mitchell,et al. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..
[12] Satish Rao,et al. Approximation schemes for Euclidean k-medians and related problems , 1998, STOC '98.
[13] Joseph S. B. Mitchell,et al. Approximation algorithms for TSP with neighborhoods in the plane , 2001, SODA '01.
[14] Klaus Jansen,et al. Polynomial-Time Approximation Schemes for Geometric Intersection Graphs , 2005, SIAM J. Comput..
[15] S. Rao Kosaraju. Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms , 2001 .
[16] Chandrajit L. Bajaj,et al. Proving Geometric Algorithm Non-Solvability: An Application of Factoring Polynomials , 1986, J. Symb. Comput..
[17] Luzius D. Meisser. On the Power Assignment Problem in Radio Networks , 2005 .
[18] Chandrajit L. Bajaj,et al. The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..
[19] Esther M. Arkin,et al. Angewandte Mathematik Und Informatik Universit at Zu K Oln Approximation Algorithms for Lawn Mowing and Milling Ss Andor P.fekete Center for Parallel Computing Universitt at Zu Kk Oln D{50923 Kk Oln Germany Approximation Algorithms for Lawn Mowing and Milling , 2022 .
[20] Rina Panigrahy,et al. Clustering to minimize the sum of cluster diameters , 2001, STOC '01.
[21] J. Rotman. Advanced Modern Algebra , 2002 .
[22] Friedrich Eisenbrand,et al. Energy-aware stage illumination , 2005, Int. J. Comput. Geom. Appl..
[23] Esther M. Arkin,et al. Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..