Towards Applications of Deep Learning Techniques to Establish Surrogate Models for the Power Exhaust in Tokamaks
暂无分享,去创建一个
Surrogate Models for the Power Exhaust in Tokamaks M. Brenzke1, S. Wiesen1, M. Bernert2, D.P. Coster2, U. von Toussaint2, EUROfusion MST1 Team3 and the ASDEX Upgrade Team 1 Forschungszentrum Jülich, Institut für Energieund Klimaforschung, 52425 Jülich, Germany 2 Max Planck Institute for Plasma Physics, 85748 Garching, Germany 3 See the author list of H. Meyer et al., Nucl. Fusion 57 (2017) 102014
[1] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[2] P. O. Hulth,et al. Energy reconstruction methods in the IceCube neutrino telescope , 2013, 1311.4767.
[3] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..