An Integrating Text Retrieval Framework for Digital Ecosystems Paradigm

The purpose of the research is to provide effective information retrieval services for digital 'organisms' in a digital ecosystem by leveraging the power of Web searching technology. A novel integrating digital ecosystem search framework (a new digital organism) is proposed which employs the Web search technology and traditional database searching techniques to provide economic organisms with comprehensive, dynamic, and organization-oriented information retrieval ranging from the Internet to personal (semantic) desktop.

[1]  Alexander Pretschner,et al.  Ontology-based personalized search and browsing , 2003, Web Intell. Agent Syst..

[2]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[3]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[4]  Hector Garcia-Molina,et al.  Parallel crawlers , 2002, WWW.

[5]  Norbert Fuhr,et al.  A new Effective Approach for Categorizing Web Documents , 2000 .

[6]  Peter Dolog,et al.  Challenges and Benefits of the Semantic Web for User Modelling , 2003 .

[7]  King-Lup Liu,et al.  Building efficient and effective metasearch engines , 2002, CSUR.

[8]  Robert Williams,et al.  Assisted Query Formulation Using Normalised Word Vector and Dynamic Ontological Filtering , 2006, FQAS.

[9]  Dengya Zhu Improving the Relevance of Search Results: Search-term Disambiguation and Ontological Filtering , 2009 .

[10]  JAMES PITKOW,et al.  A contextual computing approach may prove a breakthrough in personalized search efficiency , .

[11]  Dunja Mladenic,et al.  Turning {{\sc Yahoo!}}\ into an automatic Web page classifier , 1998 .

[12]  Ryan Barrows,et al.  Search Considered Integral , 2006, ACM Queue.

[13]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[14]  Sriram Raghavan,et al.  Searching the Web , 2001, ACM Trans. Internet Techn..

[15]  James Allan,et al.  Using part-of-speech patterns to reduce query ambiguity , 2002, SIGIR '02.

[16]  Susan T. Dumais,et al.  Optimizing search by showing results in context , 2001, CHI.

[17]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[18]  Stefano Mizzaro,et al.  How many relevances in information retrieval? , 1998, Interact. Comput..

[19]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 2 , 2000, Inf. Process. Manag..

[20]  Hinrich Schütze,et al.  Personalized search , 2002, CACM.

[21]  Stefano Mizzaro Relevance: the whole history , 1997 .

[22]  Greg R. Notess Northern light: new search engine for the Web and full-text articles , 1998 .

[23]  Abraham Silberschatz,et al.  Database System Concepts , 1980 .

[24]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.