The construction of BaTiO3-based core-shell composites for high-performance and flexible piezoelectric nanogenerators

[1]  Sushmee Badhulika,et al.  A high performance lead-free flexible piezoelectric nanogenerator based on AlFeO3 nanorods interspersed in PDMS matrix for biomechanical energy scavenging to sustainably power electronics , 2023, Nanotechnology.

[2]  Sushmee Badhulika,et al.  Piezo/Triboelectric Nanogenerator from Lithium-Modified Zinc Titanium Oxide Nanofibers to Monitor Contact in Sports , 2023, ACS Applied Nano Materials.

[3]  Sushmee Badhulika,et al.  Multilayered Piezoelectric Nanogenerator Based on Lead-Free Poly(vinylidene fluoride)-(0.67BiFeO3-0.33BaTiO3) Electrospun Nanofiber Mats for Fast Charging of Supercapacitors , 2022, ACS Applied Energy Materials.

[4]  G. Yuan,et al.  Barium calcium titanate @carbon hybrid materials for high-efficiency room-temperature pyrocatalysis , 2021, Ceramics International.

[5]  Xingyi Huang,et al.  Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators , 2021 .

[6]  Jinzhan Su,et al.  Significantly enhanced electrostatic energy storage performance of P(VDF-HFP)/BaTiO3-Bi(Li0.5Nb0.5)O3 nanocomposites , 2020, Nano Energy.

[7]  Huajun Sun,et al.  Organic phosphonic acid-modified BaTiO3/P(VDF-TrFE) composite with high output in both voltage and power for flexible piezoelectric nanogenerators , 2020 .

[8]  Z. Jia,et al.  In situ electric field driven assembly to construct adaptive graded permittivity BaTiO3/epoxy resin composites for improved insulation performance , 2020 .

[9]  C. Shuai,et al.  A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold , 2020 .

[10]  Jinzhan Su,et al.  Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO3@MgO structures as the filler , 2020 .

[11]  A. Kholkin,et al.  Peculiarities of the Crystal Structure Evolution of BiFeO3–BaTiO3 Ceramics across Structural Phase Transitions , 2020, Nanomaterials.

[12]  Xing Sheng,et al.  Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics. , 2020, Small.

[13]  Zhong Lin Wang,et al.  Alternating Current Photovoltaic Effect , 2020, Advanced materials.

[14]  Xiaoyang Guan,et al.  Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors , 2020 .

[15]  Chang Kyu Jeong,et al.  Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors , 2019, Journal of Materials Chemistry A.

[16]  Xingyi Huang,et al.  Dielectric Modulated Cellulose Paper/PDMS‐Based Triboelectric Nanogenerators for Wireless Transmission and Electropolymerization Applications , 2019, Advanced Functional Materials.

[17]  Seong Kwang Hong,et al.  Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing , 2019, Advanced materials.

[18]  Zhong Lin Wang,et al.  Performance Enhancement of Flexible Piezoelectric Nanogenerator via Doping and Rational 3D Structure Design For Self‐Powered Mechanosensational System , 2019, Advanced Functional Materials.

[19]  K. Zhou,et al.  Interface design for high energy density polymer nanocomposites. , 2019, Chemical Society reviews.

[20]  Zhong Lin Wang,et al.  Fiber/Fabric‐Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence , 2019, Advanced materials.

[21]  X. Tao,et al.  Smart Textile‐Integrated Microelectronic Systems for Wearable Applications , 2019, Advanced materials.

[22]  Nae-Eung Lee,et al.  An Omnidirectionally Stretchable Piezoelectric Nanogenerator Based on Hybrid Nanofibers and Carbon Electrodes for Multimodal Straining and Human Kinematics Energy Harvesting , 2019, Advanced Energy Materials.

[23]  Sang‐Woo Kim,et al.  Hybrid Energy Harvesters: Toward Sustainable Energy Harvesting , 2019, Advanced materials.

[24]  Ning Wang,et al.  Tactile sensor from self-chargeable piezoelectric supercapacitor , 2019, Nano Energy.

[25]  Jin Kon Kim,et al.  Nature Driven Bio‐Piezoelectric/Triboelectric Nanogenerator as Next‐Generation Green Energy Harvester for Smart and Pollution Free Society , 2019, Advanced Energy Materials.

[26]  L. Panina,et al.  Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1- - (BaTiO3) bicomponent ceramics , 2018, Ceramics International.

[27]  Zhong Lin Wang Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics – A recall on the original thoughts for coining these fields , 2018, Nano Energy.

[28]  Yubo Fan,et al.  Implantable Energy‐Harvesting Devices , 2018, Advanced materials.

[29]  Lei Wei,et al.  Highly Oriented Electrospun P(VDF‐TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing , 2018 .

[30]  P. Thakur,et al.  Control of electromagnetic properties in substituted M-type hexagonal ferrites , 2018, Journal of Alloys and Compounds.

[31]  Chang Kyu Jeong,et al.  Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. , 2018, Small.

[32]  Qi Wang,et al.  Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites , 2018 .

[33]  Kwang-Ho Kim,et al.  Piezoelectric Performance of Cubic‐Phase BaTiO3 Nanoparticles Vertically Aligned via Electric Field , 2018 .

[34]  Jinyou Shao,et al.  A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring. , 2017, ACS applied materials & interfaces.

[35]  Zhong Lin Wang,et al.  Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-tunable Ternary CdSxSe1-x Nanowires , 2017 .

[36]  Xiaogan Li,et al.  Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode , 2017, Advanced materials.

[37]  Usman Khan,et al.  High‐Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment , 2017 .

[38]  Yiin-Kuen Fuh,et al.  Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition , 2016 .

[39]  Yongan Huang,et al.  Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability , 2016, Advanced materials.

[40]  Sandip Maiti,et al.  An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self‐Poled PVDF/AlO‐rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency , 2016 .

[41]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[42]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[43]  A. Balagurov,et al.  Crystal structure and magnetic properties of the BaFe12−xInxO19 (x=0.1–1.2) solid solutions , 2015 .

[44]  Liang Hu,et al.  Nanocomposites with BaTiO3–SrTiO3 hybrid fillers exhibiting enhanced dielectric behaviours and energy-storage densities , 2015 .

[45]  Guangmei Xia,et al.  Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles , 2015 .

[46]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[47]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[48]  Shenglin Jiang,et al.  Piezoelectric formation mechanisms and phase transformation of poly(vinylidene fluoride)/graphite nanosheets nanocomposites , 2013, Journal of Materials Science: Materials in Electronics.

[49]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[50]  Lijie Dong,et al.  Piezoelectric and dielectric properties of PZT/PVC and graphite doped with PZT/PVC composites , 2006 .

[51]  T. Kutty,et al.  Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy , 2003 .

[52]  R. Gregorio,et al.  Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride) , 1994 .

[53]  Yuanjie Su,et al.  Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring , 2020, Sensors and Actuators A: Physical.

[54]  Sabu Thomas,et al.  Dopamine functionalization of BaTiO3: an effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites. , 2018, Dalton transactions.

[55]  L. Panina,et al.  Polarization origin and iron positions in indium doped barium hexaferrites , 2018 .

[56]  Shahjadi Hisan Farjana,et al.  Recent Advances in Nanogenerator‐Driven Self‐Powered Implantable Biomedical Devices , 2018 .

[57]  Zheng Zhang,et al.  High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF , 2015 .

[58]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.