Modeling of ground excavation with the particle finite element method

An excavation process is a nonlinear dynamic problem that includes geometrical, material, and contact nonlinearities. The simulation of ground excavation has to face contact interaction in a changing geometry composed by several solid domains. The particle finite-element method (PFEM) is based on a Lagrangian description for modeling the motion of a continuum medium. The PFEM is particularly suitable for modeling a fluid motion with free surfaces. The application of the PFEM in ground excavation includes the use of the remeshing process, α-shape concepts for detecting the domain boundary, contact mechanics laws, material constitutive models, and surface wear models. Everything is correctly matched to quantify the excavation and the corresponding damage caused to the ground. The erosion and wear parameters of the soil/rock material govern the evolution of the excavation process. The preliminary results presented in this paper show that the PFEM it is a very suitable tool for the simulation of ground excavation processes.

[1]  Amir R. Khoei,et al.  The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems , 2007 .

[2]  P. Michor,et al.  Natural operations in differential geometry , 1993 .

[3]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[4]  Claude Brezinski,et al.  Numerical Methods for Engineers and Scientists , 1992 .

[5]  E. Oñate,et al.  The extended Delaunay tessellation , 2003 .

[6]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[7]  M. Raous,et al.  Quasistatic Signorini Problem with Coulomb Friction and Coupling to Adhesion , 1999 .

[8]  K. Röbenack Computation of Lie Derivatives of Tensor Fields Required for Nonlinear Controller and Observer Design Employing Automatic Differentiation , 2005 .

[9]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[10]  J. Oden,et al.  Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity , 1983 .

[11]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[12]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[13]  José Car Eduardo Modelo constitutivo continuo para el estudio del comportamiento mecánico de los materiales compuestos , 2000 .

[15]  Tamal K. Dey,et al.  Weighted Delaunay Refinement for Polyhedra with Small Angles , 2005, IMR.

[16]  A. Klarbring A mathematical programming approach to three-dimensional contact problems with friction , 1986 .

[17]  Eugenio Oñate,et al.  Polyhedrization of an arbitrary 3D point set , 2003 .

[18]  J. Williams,et al.  Discrete element simulation and the contact problem , 1999 .

[19]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[20]  O. C. Zienkiewicz,et al.  El método de los elementos finitos , 1981 .

[21]  Pooyan Dadvand,et al.  A framework for developing finite element codes for multi-disciplinary applications. , 2007 .

[22]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[23]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[24]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[25]  Hang Si,et al.  On Refinement of Constrained Delaunay Tetrahedralizations , 2006, IMR.

[26]  E. Rabinowicz Direction of the Friction Force , 1957, Nature.

[27]  Peter Wriggers,et al.  Contact constraints within coupled thermomechanical analysis—A finite element model , 1994 .

[28]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[29]  Eugenio Oñate,et al.  A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .

[30]  T. Thomas,et al.  Contact of rough surfaces: A review of experimental work , 1980 .

[31]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[32]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[33]  Ekkehard Ramm,et al.  Constraint Energy Momentum Algorithm and its application to non-linear dynamics of shells , 1996 .

[34]  Bijan Boroomand,et al.  RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .

[35]  Eugenio Oñate,et al.  Modeling bed erosion in free surface flows by the particle finite element method , 2006 .

[36]  Eugenio Oñate,et al.  The meshless finite element method , 2003 .

[37]  J. C. Cante,et al.  Particle Finite Element Methods in Solid Mechanics Problems , 2007 .

[38]  A. Seireg,et al.  A Mathematical Programming Method for Design of Elastic Bodies in Contact , 1971 .

[39]  F D Wang,et al.  MECHANICAL TUNNEL BORING PREDICTION AND MACHINE DESIGN , 1979 .

[40]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[41]  J. Oliver A consistent characteristic length for smeared cracking models , 1989 .

[42]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[43]  A. De Loera,et al.  Triangulations Of Point Sets Applications, Structures, Algorithms , 2003 .

[44]  Xavier Martinez,et al.  Micro mechanical simulation of composite materials using the serial/parallel mixing theory , 2008 .

[45]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[46]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[47]  Z. Zhong Finite Element Procedures for Contact-Impact Problems , 1993 .

[48]  S. Oller Un modelo de daño continuo para materiales-friccionales , 1988 .

[49]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[50]  E. Oñate,et al.  Finite calculus formulation for incompressible solids using linear triangles and tetrahedra , 2004 .

[51]  E. Oñate,et al.  Combination of the critical displacement method with a damage model for structural instability analysis , 2001 .

[52]  F. F. Roxborough,et al.  Rock excavation by disc cutter , 1976 .

[53]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[54]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[55]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[56]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems , 1999 .

[57]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[58]  Jerzy Rojek,et al.  Advances in discrete element modelling of underground excavations , 2008 .

[59]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[60]  John T. Burwell,et al.  Survey of possible wear mechanisms , 1957 .

[61]  P. Petersson Crack growth and development of fracture zones in plain concrete and similar materials , 1981 .

[62]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[63]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[64]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[65]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[66]  Peter Wriggers,et al.  On the Treatment of Contact Contraints within Coupled Thermomechanical Analysis , 1992 .

[67]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[68]  Eugenio Oñate,et al.  Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems , 2004 .

[69]  Habib Alehossein,et al.  A development in rock cutting technology , 2000 .

[70]  Bernardino Chiaia,et al.  Fracture mechanisms induced in a brittle material by a hard cutting indenter , 2001 .

[71]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[72]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[73]  C Thompson,et al.  Applied CFD techniques: An introduction based on finite element methods , 2002 .

[74]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[75]  E. Rabinowicz,et al.  Friction and Wear of Materials , 1966 .

[76]  J. C. Simo,et al.  A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems , 1993 .

[77]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[78]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .