Semantic trajectory compression: Representing urban movement in a nutshell

There is an increasing number of rapidly growing repositories capturing the movement of people in space-time. Movement trajectory compression becomes an ob- vious necessity for coping with such growing data volumes. This paper introduces the concept of semantic trajectory compression (STC). STC allows for substantially compressing trajectory data with acceptable information loss. It exploits that human urban mobility typically occurs in transportation networks that define a geographic context for the move- ment. In STC, a semantic representation of the trajectory that consists of reference points localized in a transportation network replaces raw, highly redundant position information (e.g., from GPS receivers). An experimental evaluation with real and synthetic trajectories demonstrates the power of STC in reducing trajectories to essential information and illus- trates how trajectories can be restored from compressed data. The paper discusses possible application areas of STC trajectories.

[1]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[2]  Reginald G. Golledge,et al.  Path Selection and Route Preference in Human Navigation: A Progress Report , 1995, COSIT.

[3]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[4]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[5]  Paul U. Lee,et al.  How Space Structures Language , 1998, Spatial Cognition.

[6]  David Bernstein,et al.  Some map matching algorithms for personal navigation assistants , 2000 .

[7]  Carl Stephen Smyth Mining mobile trajectories , 2001 .

[8]  J. Greenfeld MATCHING GPS OBSERVATIONS TO LOCATIONS ON A DIGITAL MAP , 2002 .

[9]  Leonidas J. Guibas,et al.  Algorithmic issues in modeling motion , 2002, CSUR.

[10]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[11]  Lars Kulik,et al.  "Simplest" Paths: Automated Route Selection for Navigation , 2003, COSIT.

[12]  Thad Starner,et al.  Using GPS to learn significant locations and predict movement across multiple users , 2003, Personal and Ubiquitous Computing.

[13]  Alexander Klippel,et al.  Pictorial Representations of Routes: Chunking Route Segments during Comprehension , 2003, Spatial Cognition.

[14]  Yufei Tao,et al.  Query Processing in Spatial Network Databases , 2003, VLDB.

[15]  Jason Dykes,et al.  Seeking structure in records of spatio-temporal behaviour: visualization issues, efforts and applications , 2003, Comput. Stat. Data Anal..

[16]  Washington Y. Ochieng,et al.  A general map matching algorithm for transport telematics applications , 2003 .

[17]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[18]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[19]  Lei Chen,et al.  Symbolic representation and retrieval of moving object trajectories , 2004, MIR '04.

[20]  Ralf Hartmut Güting,et al.  Modeling and querying moving objects in networks , 2006, The VLDB Journal.

[21]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[22]  Ouri Wolfson,et al.  Nonmaterialized Motion Information in Transport Networks , 2005, ICDT.

[23]  Antony Galton,et al.  Dynamic Collectives and Their Collective Dynamics , 2005, COSIT.

[24]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[25]  Sabine Geldof,et al.  Using Natural Language Generation in Automatic Route Description , 2005, J. Res. Pract. Inf. Technol..

[26]  Xiang Li,et al.  Indexing network‐constrained trajectories for connectivity‐based queries , 2006, Int. J. Geogr. Inf. Sci..

[27]  Timos K. Sellis,et al.  Sampling Trajectory Streams with Spatiotemporal Criteria , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[28]  Kai-Florian Richter,et al.  Extracting Places from Location Data Streams 1 , 2006 .

[29]  Henry A. Kautz,et al.  Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields , 2007, Int. J. Robotics Res..

[30]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[31]  Falko Schmid Formulating, Identifying and Analyzing Individual Spatial Knowledge , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).

[32]  Bettina Speckmann,et al.  Efficient Detection of Patterns in 2D Trajectories of Moving Points , 2007, GeoInformatica.

[33]  Daniel R. Montello,et al.  Linguistic and Nonlinguistic Turn Direction Concepts , 2007, COSIT.

[34]  Marco Mamei,et al.  The Whereabouts Diary , 2007, LoCA.

[35]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[36]  Yannis Theodoridis,et al.  On the Effect of Trajectory Compression in Spatiotemporal Querying , 2007, ADBIS.

[37]  Stefano Spaccapietra,et al.  Trajectory Ontologies and Queries , 2008 .

[38]  Falko Schmid Knowledge-based wayfinding maps for small display cartography , 2008, J. Locat. Based Serv..

[39]  Christian S. Jensen,et al.  Similarity-based prediction of travel times for vehicles traveling on known routes , 2008, GIS '08.

[40]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[41]  Kai-Florian Richter,et al.  Context-specific route directions: generation of cognitively motivated wayfinding instructions , 2008 .

[42]  Kai-Florian Richter,et al.  Context-specific Route Directions , 2008, Künstliche Intell..

[43]  Stephan Winter,et al.  Urban granularities—a data structure for cognitively ergonomic route directions , 2009, GeoInformatica.

[44]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[45]  Alasdair Turner The Role of Angularity in Route Choice , 2009, COSIT.

[46]  Xiang Li,et al.  Deriving network-constrained trajectories from sporadic tracking points collected in location-based services , 2009 .

[47]  Joachim Gudmundsson,et al.  Compressing spatio-temporal trajectories , 2009, Comput. Geom..

[48]  Kai-Florian Richter,et al.  Semantic Trajectory Compression , 2009, SSTD.

[49]  Thomas K. Peucker,et al.  2. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature , 2011 .