Tropospheric water vapor imaging by combination of ground-based and spaceborne GNSS sounding data

The Global Navigation Satellite System (GNSS) comprises the U.S. system GPS (Global Positioning System), its Russian pendant GLONASS, and presumably, in the future, the European system Galileo. The potential of GNSS-based phase delay measurements for accurately estimating vertically and slant-path-integrated water vapor has been demonstrated recently for radio links between GPS satellites and ground-based GPS receivers. GNSS-based radio occultation, on the other hand, has been demonstrated via the GPS/Meteorology experiment to deliver accurate near-vertical profiles of atmospheric variables such as temperature and humidity with high vertical resolution. Height-resolving imaging of atmospheric water vapor becomes feasible when occultation profiles from spaceborne receivers in Low Earth Orbits (LEO) are combined with ground-based GNSS data from a colocated receiver network. We developed a two-dimensional, height-resolving tomographic imaging technique following the Bayesian approach for optimal combination of information from different sources. Using simulated GNSS-based water vapor measurements from LEO and ground, we show representative results derived from simple synthetic refractivity fields as well as from a realistic refractivity field based on a European Centre for Medium-Range Weather Forecasts (ECMWF) analysis. For cases located poleward of ∼40° we found a new simple mapping function to perform best within our forward model scheme, where the only free parameter is the climatological scale height in the troposphere, the exact value of which is not critical. The mapping function exploits the ratio between the straight-line ray path length within the first two scale heights above surface and the “effective height” defined by these first two scale heights. We found our technique capable of reconstructing atmospheric features like water vapor maxima near the top of the trade wind inversion. Adjustment of the integral over the water vapor profile measurements to the horizontally averaged ground-based vertical integrated water vapor data efficiently mitigates potential biases in the former data. Accuracies are best in areas with high absolute humidities but also over drier areas such as Finland, useful two-dimensional information can still be obtained. Thus it is attractive to apply the developed technique in a next step to real data.

[1]  Richard Betts,et al.  The science of climate change , 2010 .

[2]  Markus J. Rieder,et al.  Error analysis and characterization of atmospheric profiles retrieved from GNSS occultation data , 2001 .

[3]  Markus J. Rieder,et al.  Error analysis for mesospheric temperature profiling by absorptive occultation sensors , 2001 .

[4]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[5]  J. R. Eyre,et al.  Retrieving temperature, water vapour and surface pressure information from refractive‐index profiles derived by radio occultation: A simulation study , 2000 .

[6]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[7]  Paul Tregoning,et al.  Accuracy of absolute precipitable water vapor estimates from GPS observations , 1998 .

[8]  M. E. Gorbunov,et al.  Microlab‐1 experiment: Multipath effects in the lower troposphere , 1998 .

[9]  M. Rycroft Radiation and water in the climate system. Remote measurements , 1998 .

[10]  Jan M. Johansson,et al.  Three months of continuous monitoring of atmospheric water vapor with a network of Global Positioning System receivers , 1998 .

[11]  Stig Syndergaard,et al.  Modeling the impact of the Earth's oblateness on the retrieval of temperature and pressure profiles from limb sounding , 1998 .

[12]  G. Leonard Tyler,et al.  The two‐dimensional resolution kernel associated with retrieval of ionospheric and atmospheric refractivity profiles by Abelian inversion of radio occultation phase data , 1998 .

[13]  Christian Rocken,et al.  Near real‐time GPS sensing of atmospheric water vapor , 1997 .

[14]  W. Broecker,et al.  Thermohaline circulation, the achilles heel of our climate system: will man-made CO2 upset the current balance? , 1997, Science.

[15]  Jan M. Johansson,et al.  Measuring regional atmospheric water vapor using the Swedish Permanent GPS Network , 1997 .

[16]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[17]  Rebecca J. Ross,et al.  Estimating mean weighted temperature of the atmosphere for Global Positioning System applications , 1997 .

[18]  Christian Rocken,et al.  GPS surveying with 1 mm precision using corrections for atmospheric slant path delay , 1997 .

[19]  R. Leitinger,et al.  Ionosphere tomography with data from satellite reception of Global Navigation Satellite System signals and ground reception of Navy Navigation Satellite System signals , 1997 .

[20]  K. Hocke,et al.  Inversion of GPS meteorology data , 1997 .

[21]  E. Karayel,et al.  Sub‐Fresnel‐scale vertical resolution in atmospheric profiles from radio occultation , 1997 .

[22]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[23]  E. Kursinski,et al.  The GPS Radio Occultation Concept: Theoretical Performance and Initial Results , 1997 .

[24]  Stephen H. Schneider,et al.  Encyclopedia of Climate and Weather , 1996 .

[25]  Steven Businger,et al.  GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water , 1996 .

[26]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[27]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[28]  Lennart Bengtsson,et al.  Advanced algorithms of inversion of GPS/MET satellite data and their application to reconstruction of temperature and humidity , 1996 .

[29]  M. E. Gorbunov Three-dimensional satellite refractive tomography of the atmosphere: Numerical simulation , 1996 .

[30]  S. Keihm,et al.  A test of water vapor radiometer‐based troposphere calibration using very long baseline interferometry observations on a 21‐km baseline , 1996 .

[31]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[32]  B. Lundborg,et al.  An integral representation of the wave field in inhomogeneous media in terms of diffracting , 1996 .

[33]  Stephen S. Leroy,et al.  Initial Results of GPS-LEO Occultation Measurements of Earth’s Atmosphere Obtained with the GPS-MET Experiment , 1996 .

[34]  G. Fehmers Tomography of the ionosphere , 1996 .

[35]  Larry J. Romans,et al.  Observing tropospheric water vapor by radio occultation using the Global Positioning System , 1995 .

[36]  Christian Rocken,et al.  GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology , 1995 .

[37]  Alain Hauchecorne,et al.  Derivation Of Atmospheric Properties Using A Radio Occultation Technique , 1995 .

[38]  D. J. Allerton,et al.  Book Review: GPS theory and practice. Second Edition, HOFFMANNWELLENHOFF B., LICHTENEGGER H. and COLLINS J., 1993, 326 pp., Springer, £31.00 pb, ISBN 3-211-82477-4 , 1995 .

[39]  Murry L. Salby,et al.  Fundamentals of atmospheric physics , 1995 .

[40]  M. Yao,et al.  Climatic implications of the seasonal variation of upper troposphere water vapor , 1994 .

[41]  Peter J. Webster,et al.  The role of hydrological processes in ocean‐atmosphere interactions , 1994 .

[42]  S. Rahmstorf Rapid climate transitions in a coupled ocean–atmosphere model , 1994, Nature.

[43]  S. Bony,et al.  Influence of the vertical structure of the atmosphere on the seasonal variation of precipitable water and greenhouse effect , 1994 .

[44]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[45]  Larry J. Romans,et al.  Assessment of GPS Occultations for Atmospheric Profiling , 1994 .

[46]  L. J. Romans,et al.  Imaging the ionosphere with the global positioning system , 1994, Int. J. Imaging Syst. Technol..

[47]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[48]  V. V. Vorob’ev,et al.  Estimation of the accuracy of the atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system , 1994 .

[49]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[50]  C. Alber,et al.  Pointed water vapor radiometer corrections for accurate global positioning system surveying , 1993 .

[51]  Gunnar Elgered,et al.  Ground‐based measurement of gradients in the “wet” radio refractivity of air , 1993 .

[52]  E. Robert Kursinski,et al.  Accuracies of atmospheric profiles obtained from GPS occultations , 1993 .

[53]  Lester L. Yuan,et al.  Sensing Climate Change Using the Global Positioning System , 1993 .

[54]  Michael E. Gorbunov,et al.  Remote sensing of refractivity from space for global observations of atmospheric parameters , 1993 .

[55]  M. Janssen Atmospheric Remote Sensing by Microwave Radiometry , 1993 .

[56]  A. Robock,et al.  Annual cycles of tropospheric water vapor , 1992 .

[57]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[58]  Moustafa T. Chahine,et al.  The hydrological cycle and its influence on climate , 1992, Nature.

[59]  Alan Robock,et al.  Relationships between tropospheric water vapor and surface temperature as observed by radiosondes , 1992 .

[60]  G. F. Lindal,et al.  The atmosphere of Neptune : an analysis of radio occultation data acquired with Voyager 2 , 1992 .

[61]  David P. Hinson,et al.  Atmospheric profiles from active space-based radio measurements , 1992 .

[62]  J. A. Magalhāes,et al.  Equatorial waves in the stratosphere of Uranus , 1991 .

[63]  K. Kelly,et al.  Wintertime asymmetry of upper tropospheric water between the Northern and Southern Hemispheres , 1991, Nature.

[64]  R. Ruedy,et al.  Simulations of the effect of a warmer climate on atmospheric humidity , 1991, Nature.

[65]  Timothy H. Dixon,et al.  An introduction to the global positioning system and some geological applications , 1991 .

[66]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[67]  G. F. Lindal,et al.  The atmosphere of Neptune: Results of radio occultation measurements with the Voyager 2 spacecraft , 1990 .

[68]  Stephen M. Lichten,et al.  Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements , 1990 .

[69]  T. P. Yunck,et al.  The role of GPS in precise Earth observation , 1988, IEEE PLANS '88.,Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'..

[70]  G. F. Lindal,et al.  The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2 , 1987 .

[71]  Jan Askne,et al.  Estimation of tropospheric delay for microwaves from surface weather data , 1987 .

[72]  Robert N. Treuhaft,et al.  The effect of the dynamic wet troposphere on radio interferometric measurements , 1987 .

[73]  Jan Drewes Achenbach,et al.  Acoustic and Electromagnetic Waves , 1986 .

[74]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[75]  G. F. Lindal,et al.  The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements , 1985 .

[76]  J. Peixoto,et al.  Physics of climate , 1984 .

[77]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[78]  Henry B. Hotz,et al.  The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements , 1981 .

[79]  V. Eshleman,et al.  The Atmosphere of Jupiter: An Analysis of Voyager Radio Occultation Measurements. , 1981 .

[80]  Felix R. Hoots,et al.  Models for Propagation of NORAD Element Sets , 1980 .

[81]  W. H. Michael,et al.  Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking , 1979 .

[82]  B. L. Seidel,et al.  Viking Radio Occultation Measurements of the Martian Atmosphere and Topography: Primary Mission Coverage , 1977 .

[83]  C. Rodgers,et al.  Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation , 1976 .

[84]  G. D. Thayer,et al.  An improved equation for the radio refractive index of air , 1974 .

[85]  V. Eshleman The radio occultation method for the study of planetary atmospheres , 1973 .

[86]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[87]  J. Saastamoinen,et al.  Introduction to practical computation of astronomical refraction , 1972 .

[88]  J. Saastamoinen Contributions to the theory of atmospheric refraction , 1972 .

[89]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[90]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[91]  S. Ungar,et al.  Sensing the earth's atmosphere with occultation satellites , 1969 .

[92]  G. Fjeldbo,et al.  The atmosphere of mars analyzed by integral inversion of the Mariner IV occultation data , 1968 .

[93]  D. Anderson,et al.  On the radio occultation method for studying planetary atmospheres , 1968 .

[94]  G. Fjeldbo,et al.  The two-frequency bistatic radar-occultation method for the study of planetary ionospheres. , 1965 .

[95]  G. Fjeldbo,et al.  The bistatic radar‐occultation method for the study of planetary atmospheres , 1965 .

[96]  Ernest K. Smith,et al.  The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies , 1953, Proceedings of the IRE.