Sodium and calcium components of action potentials in Aplysia giant neurone

1. Action potentials resulting from direct stimulation can be recorded from the soma of the Aplysia giant neurone (located in the visceral ganglion) in sodium‐free and in calcium‐free external solutions. The neurones were impaled by internal micro‐electrodes throughout the change of external solutions.

[1]  G. A. Kerkut,et al.  Voltage Clamp Studies on Snail (Helix aspersa) Neurones , 1967, Nature.

[2]  D. Junge Multi-ionic Action Potentials in Molluscan Giant Neurones , 1967, Nature.

[3]  R. M. Benolken,et al.  Tetrodotoxin Blocks a Graded Sensory Response in the Eye of Limulus , 1967, Science.

[4]  K. Takeda Permeability Changes Associated with the Action Potential in Procaine-Treated Crayfish Abdominal Muscle Fibers , 1967, The Journal of general physiology.

[5]  I. Tasaki,et al.  Effects of Tetrodotoxin on Excitability of Squid Giant Axons in Sodium-Free Media , 1967, Science.

[6]  Susumu Hagiwara,et al.  Surface Density of Calcium Ions and Calcium Spikes in the Barnacle Muscle Fiber Membrane , 1967, The Journal of general physiology.

[7]  E. Kandel,et al.  A MORPHOLOGICAL AND FUNCTIONAL STUDY ON A CLUSTER OF IDENTIFIABLE NEUROSECRETORY CELLS IN THE ABDOMINAL GANGLION OF APLYSIA CALIFORNICA , 1966, The Journal of cell biology.

[8]  H. Kuriyama,et al.  Effect of tetrodotoxin on smooth muscle cells of the guinea-pig taenia coli. , 1966, British journal of pharmacology and chemotherapy.

[9]  A. R. Freeman,et al.  The Membrane Components of Crustacean Neuromuscular Systems. , 1966, The Journal of general physiology.

[10]  I. Tasaki,et al.  MEMBRANE MACROMOLECULES AND NERVE EXCITABILITY: A PHYSICO‐CHEMICAL INTERPRETATION OF EXCITATION IN SQUID GIANT AXONS , 1966, Annals of the New York Academy of Sciences.

[11]  B. Hille Common Mode of Action of Three Agents that Decrease the Transient Change in Sodium Permeability in Nerves , 1966, Nature.

[12]  R. Orkand,et al.  The dependence of the action potential of the frog's heart on the external and intracellular sodium concentration , 1966, The Journal of physiology.

[13]  R. Orkand,et al.  The dual effect of calcium on the action potential of the frog's heart , 1966, The Journal of physiology.

[14]  H. Grundfest,et al.  The action of tetrodotoxin on electrogenic components of squid giant axons. , 1965, The Journal of general physiology.

[15]  I. Parnas,et al.  Electrical and Mechanical Responses in Deep Abdominal Extensor Muscles of Crayfish and Lobster , 1965, The Journal of general physiology.

[16]  Susumu Hagiwara,et al.  The Initiation of Spike Potential in Barnacle Muscle Fibers under Low Intracellular Ca++ , 1964, The Journal of general physiology.

[17]  K. Naka,et al.  The Effects of Various Ions on Resting and Spike Potentials of Barnacle Muscle Fibers , 1964, The Journal of general physiology.

[18]  JOHN W. Moore,et al.  Tetrodotoxin Blockage of Sodium Conductance Increase in Lobster Giant Axons , 1964, The Journal of general physiology.

[19]  E. Bülbring,et al.  Effects of changes in the external sodium and calcium concentrations on spontaneous electrical activity in smooth muscle of guinea‐pig taenia coli , 1963, The Journal of physiology.

[20]  D. W. Wood The effect of sodium ions on the resting and action potentials of locust and cockroach muscle fibres. , 1961, Comparative biochemistry and physiology.

[21]  B. L. Ginsborg,et al.  The ionic requirements for the production of action potentials in crustacean muscle fibres , 1958, The Journal of physiology.

[22]  A. Hodgkin,et al.  The action of calcium on the electrical properties of squid axons , 1957, The Journal of physiology.

[23]  B. Frankenhaeuser The effect of calcium on the myelinated nerve fibre , 1957, The Journal of physiology.

[24]  B. Katz,et al.  The electrical properties of crustacean muscle fibres , 1953, The Journal of physiology.

[25]  A. Hodgkin,et al.  The effect of sodium ions on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[26]  J. Welsh,et al.  The role of ions in axon surface reactions to toxic organic compounds. , 1948, Journal of cellular and comparative physiology.

[27]  F. R. Hayes,et al.  The Inorganic Constitution of Molluscan Blood and Muscle , 1947, Journal of the Marine Biological Association of the United Kingdom.

[28]  G. A. Kerkut,et al.  The role of calcium ions in the action potentials of Helix aspersa neurones , 1967 .

[29]  R. Eldik,et al.  Advances in Inorganic Chemistry , 1961, Nature.

[30]  A. Hodgkin Ionic Currents Underlying Activity in the Giant Axon of the Squid , 1949 .

[31]  Na,et al.  The Journal of General Physiology , 2022 .