The isoperimetric inequality

where A is the area enclosed by a curve C of length L, and where equality holds if and only if C is a circle. The purpose of this paper is to recount some of the most interesting of the many sharpened forms, generalizations, and applications of this inequality, with emphasis on recent contributions. Earlier work is summarized in the book of Hadwiger [1], Other general references, varying from very elementary to quite technical are Kazarinoff [1], Pólya [2, Chapter X], Porter [1], and the books of Blaschke listed in the bibliography. Most books on convexity also contain a discussion of the isoperimetric inequality from that perspective. One aspect of the subject is given by Burago [1]. Others may be found in a recent paper of the author [4] on Bonnesen inequalities and in the book of Santaló [4] on integral geometry and geometric probability. An important note: we shall not go into the area of so-called "isoperimetric problems". Those are simply variational problems with constraints, whose name derives from the fact that inequality (1) corresponds to the first example of such a problem: maximize the area of a domain under the constraint that the length of its boundary be fixed. There are also the "isoperimetric inequalities" of mathematical physics. They are special cases of isoperimetric problems in which typically some physical quantity, usually represented by the eigenvalues of a differential equation, is shown to be extremal for a circular or spherical domain. Extensive discussions of such problems can be found in the book of Pólya and Szegö [1] and the review article by Payne [1]. We shall discuss them here only insofar as they relate to the main subject of this paper. What we shall concentrate on here is "the" isoperimetric inequality (1) and other geometric versions and generalizations of it. We shall also consider

[1]  J. Steiner Sur le maximum et le minimum des figures dans le plan, sur la sphère et dans l'espace en général. Second mémoire. , 1842 .

[2]  Heinrich Liebmann,et al.  Ueber die Verbiegung der geschlossenen Flächen positiver Krümmung , 1900 .

[3]  Felix Bernstein,et al.  Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene , 1905 .

[4]  T. Carleman Über ein Minimalproblem der mathematischen Physik , 1918 .

[5]  T. Bonnesen,et al.  Über eine Verschärfung der isoperimetrischen Ungleichheit des Kreises in der Ebene und auf der Kugeloberfläche nebst einer Anwendung auf eine Minkowskische Ungleichheit für konvexe Körper , 1921 .

[6]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[7]  G. Szegö Über einige Extremalaufgaben der Potentialtheorie , 1930 .

[8]  E. Beckenbach,et al.  Subharmonic functions and surfaces of negative curvature , 1933 .

[9]  L. Ahlfors Zur Theorie der Überlagerungsflächen , 1935 .

[10]  Erhard Schmidt Über das isoperimetrische Problem im Raum vonn Dimensionen , 1939 .

[11]  F. Fiala Le problème des isopérimètres sur les surfaces ouvertes à courbure positive , 1940 .

[12]  Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper imn-dimensionalen sphärischen Raum , 1940 .

[13]  A property of pseudo-conformal transformations in the neighborhood of boundary points , 1942 .

[14]  E. Schmidt Beweis der isoperimetrischen Eigenschaft der Kugel im hyperbolischen und sphärischen Raum jeder Dimensionenzahl , 1943 .

[15]  A. Besicovitch ON THE DEFINITION AND VALUE OF THE AREA OF A SURFACE , 1945 .

[16]  Integral geometry on surfaces , 1949 .

[17]  A. Besicovitch A VARIANT OF A CLASSICAL ISOPERIMETRIC PROBLEM , 1949 .

[18]  Einführung in die Differentialgeometrie , 1950 .

[19]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[20]  A. Huber ON THE ISOPERIMETRIC INEQUALITY ON SURFACES OF VARIABLE GAUSSIAN CURVATURE1 , 1954 .

[21]  A. Huber Zur Isoperimetrischen Ungleichung Auf Gekrümmten Flächen , 1957 .

[22]  W. Reid The Isoperimetric Inequality and Associated Boundary Problems , 1959 .

[23]  Zum potentialtheoretischen Aspekt derAlexandrowschen Flächentheorie , 1960 .

[24]  H. Weinberger,et al.  Some isoperimetric inequalities for membrane frequencies and torsional rigidity , 1961 .

[25]  RINGS AND QUASICONFORMAL MAPPINGS IN SPACE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Alexandrov A characteristic property of spheres , 1962 .

[27]  F. Almgren,et al.  The homotopy groups of the integral cycle groups , 1962 .

[28]  Ungleichungen für Umfang, Flächeninhalt und Trägheitsmoment konvexer Kurven , 1963 .

[29]  Philip Hartman,et al.  GEODESIC PARALLEL COORDINATES IN THE LARGE. , 1964 .

[30]  The isoperimetric inequality for multiply-connected minimal surfaces , 1965 .

[31]  F. Almgren Three theorems on manifolds with bounded mean curvature , 1965 .

[32]  Affinities Which Preserve Lower Dimensional Volumes , 1965 .

[33]  R. Finn On a class of conformal metrics, with application to differential geometry in the large , 1965 .

[34]  An estimate for the area of a surface of bounded absolute mean integral curvature in terms of its absolute mean integral curvature and the sum of the boundary curve lengths , 1966 .

[35]  En Marge du Calcul des Variations , 1966 .

[36]  Diseguaglianze di Sobolev sulle ipersuperfici minimali , 1967 .

[37]  D. Benson Inequalities involving integrals of functions and their derivatives , 1967 .

[38]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[39]  Umkreise und Inkreise konvexer Kurven in der sphärischen und der hyperbolischen Geometrie , 1968 .

[40]  Über Eigenfrequenzen einer mehrfach zusammenhängenden Membran: Erweiterung von isoperimentrischen Sätzen von Pólya und Szegö , 1968 .

[41]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[42]  E. Giorgi,et al.  Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche , 1969 .

[43]  On isoperimetric and various other inequalities for a manifold of bounded curvature , 1969 .

[44]  An isoperimetric inequality for surfaces whose Gaussian curvature is bounded above , 1969 .

[45]  J. Wills,et al.  Zum Verhältnis von Volumen zu Oberfläche bei konvexen Körpern , 1970 .

[46]  H. Karcher Anwendungen der Alexandrowschen Winkelvergleichssätze , 1970 .

[47]  S. Hildebrandt,et al.  The number of branch points of surfaces of bounded mean curvature , 1970 .

[48]  J. Nitsche An Isoperimetric Property of Surfaces with Moveable Boundaries , 1970 .

[49]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[50]  Henry C. Wente A general existence theorem for surfaces of constant mean curvature , 1971 .

[51]  H. Poincaré Figures d'équilibre d'une masse, fluide : leçons professées à la Sorbonne en 1900 ... , 1971 .

[52]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[53]  Ein einschliessungssatz für H-flächen in Riemannschen Mannigfaltigkeiten , 1971 .

[54]  Thomas Banchoff,et al.  A generalization of the isoperimetric inequality , 1971 .

[55]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[56]  William K. Allard,et al.  On the first variation of a varifold , 1972 .

[57]  Isoperimetric inequalities for surfaces of negative curvature , 1972 .

[58]  Remarks on the isoperimetric inequality for multiply-connectedH-surfaces , 1972 .

[59]  V. I. Diskant Bounds for the discrepancy between convex bodies in terms of the isoperimetric difference , 1972 .

[60]  Helmut Kaul,et al.  Isoperimetrische ungleichung und gauβ-bonnet-formel für h-flächen in Riemannschen Mannigfaltigkeiten , 1972 .

[61]  V. Maz'ya On certain integral inequalities for functions of many variables , 1973 .

[62]  B. V. Dekster AN INEQUALITY OF THE ISOPERIMETRIC TYPE FOR A DOMAIN IN A RIEMANNIAN SPACE , 1973 .

[63]  E. Giusti,et al.  Local estimates for the gradient of non‐parametric surfaces of prescribed mean curvature , 1973 .

[64]  J. M. Luttinger Generalized isoperimetric inequalities. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. Berger Sur les premières valeurs propres des variétés riemanniennes , 1973 .

[66]  V. I. Diskant Stability of the solution of the Minkowski equation , 1973 .

[67]  Note on the isoperimetric inequality on two-dimensional surfaces , 1973 .

[68]  V. I. Diskant Strengthening of an isoperimetric inequality , 1973 .

[69]  Über die Symmetrisierung stetiger Funktionen im euklidischen Raum , 1973 .

[70]  A global theory of steady vortex rings in an ideal fluid , 1974 .

[71]  A. Baernstein Integral means, univalent functions and circular symmetrization , 1974 .

[72]  Lipman Bers,et al.  Contributions to analysis : a collection of papers dedicated to Lipman Bers , 1974 .

[73]  A Generalization of the Isoperimetric Inequality on the 2-Sphere , 1974 .

[74]  A geometrical isoperimetric inequality and applications to problems of mathematical physics , 1974 .

[75]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[76]  Shing-Tung Yau,et al.  Isoperimetric constants and the first eigenvalue of a compact riemannian manifold , 1975 .

[77]  K. Steffen On the existence of surfaces with prescribed mean curvature and boundary , 1976 .

[78]  Untersuchungen über den ersten Eigenwert des Laplace-Operators auf kompakten Flächen , 1976 .

[79]  B. A. Taylor,et al.  Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .

[80]  M. do Carmo,et al.  On the Size of a Stable Minimal Surface in R 3 , 1976 .

[81]  R. Osserman Some remarks on the isoperimetric inequality and a problem of gehring , 1976 .

[82]  R. Reilly Applications of the integral of an invariant of the Hessian , 1976 .

[83]  M. Edelstein,et al.  On the length of linked curves , 1976 .

[84]  T. Aubin,et al.  Problèmes isopérimétriques et espaces de Sobolev , 1976 .

[85]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[86]  H. Lawson,et al.  Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system , 1977 .

[87]  Jerry M. Feinberg The isoperimetric inequality for doubly-connected minimal surfaces inRn , 1977 .

[88]  P. Buser Riemannsche Flächen mit Eigenwerten in (0,1/4) , 1977 .

[89]  T. Figiel,et al.  The dimension of almost spherical sections of convex bodies , 1976 .

[90]  R. Reilly On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space , 1977 .

[91]  Isaac Chavel,et al.  An optimal poincaré inequality for convex domains of non-negative curvature , 1977 .

[92]  The isoperimetric theorem for curves on minimal surfaces , 1978 .

[93]  I. Chavel,et al.  On A. Hurwitz’ method in isoperimetric inequalities , 1978 .

[94]  A Proof of a General Isoperimetric Inequality for Surfaces , 1978 .

[95]  A Lower Bound for the Eigenvalues of the Elliptic Dirichlet Problem for a General Domain in Terms of Its Characteristic Dimension , 1978 .

[96]  Über eine Ungleichung von Cheeger , 1978 .

[97]  Some Wirtinger-Like Inequalities , 1979 .

[98]  R. Osserman DIRICHLET'S PRINCIPLE, CONFORMAL MAPPING AND MINIMAL SURFACES , 1979 .

[99]  I. Chavel,et al.  Isoperimetric inequalities on curved surfaces , 1980 .

[100]  R. Reilly Geometric applications of the solvability of Neumann problems on a Riemannian manifold , 1980 .

[101]  Remarks on a geometric constant of Yau , 1980 .