Strong analytic controllability for hydrogen control systems

The realization and representation of so(4, 2) associated with the hydrogen atom Hamiltonian are derived. By choosing operators from the realization of so(4, 2) as interacting Hamiltonians, a hydrogen atom control system is constructed, and it is proved that this control system is strongly analytically controllable based on a time-dependent strong analytic controllability theorem.

[1]  John W. Clark,et al.  Analytic controllability of time-dependent quantum control systems , 2004, quant-ph/0409147.

[2]  L. M. Albright Vectors , 2003, Current protocols in molecular biology.

[3]  T. Tarn,et al.  Geometric quantum control , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[4]  T. Tarn,et al.  Quantum Systems , 2010 .

[5]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[6]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[7]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[8]  Samuel L. Braunstein,et al.  Quantum error correction for communication with linear optics , 1998, Nature.

[9]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[10]  S. Braunstein Error Correction for Continuous Quantum Variables , 1997, quant-ph/9711049.

[11]  J. Slotine,et al.  ANALOG QUANTUM ERROR CORRECTION , 1997, quant-ph/9711021.

[12]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[13]  A. Rau,et al.  Symmetries in Quantum Physics , 1996 .

[14]  B. G. Adams,et al.  Algebraic Approach to Simple Quantum Systems , 1994 .

[15]  A. Pines,et al.  LECTURES ON PULSED NMR (2ND EDITION) , 2010 .

[16]  Berndt Müller,et al.  Quantum Mechanics: Symmetries , 1990 .

[17]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[18]  Wilson,et al.  Analytic group-theoretical form factors of hydrogenlike atoms for discrete and continuum transitions. , 1989, Physical review. A, General physics.

[19]  秋山 佳巳 A. O. Barut and R. Raczka: Theory of Group Representations and Applications, World Scientific, Singapore, 1986, xviii+718ページ, 23.5×16cm, 14,950円. , 1987 .

[20]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[21]  Alexander Pines,et al.  Lectures on pulsed NMR , 1986 .

[22]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[23]  A. Barut,et al.  Theory of group representations and applications , 1977 .

[24]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[25]  W. Miller Symmetry groups and their applications , 1972 .

[26]  Y. Dothan Finite-Dimensional Spectrum-Generating Algebras , 1970 .

[27]  H. Kleinert GROUP DYNAMICS OF THE HYDROGEN ATOM. , 1969 .

[28]  H. Bacry The de Sitter groupL4,1 and the bound states of hydrogen atom , 1966 .

[29]  M. Gell-Mann,et al.  Series of hadron energy levels as representations of non-compact groups☆ , 1965 .