Semi-global analysis of periodic and quasi-periodic normal-internal k : 1 and k : 2 resonances

This paper investigates a family of nonlinear oscillators at Hopf bifurcation, driven by a small quasi-periodic forcing. In particular, we are interested in the situation that at bifurcation and for vanishing forcing strength, the driving frequency and the normal frequency are in k : 1 or k : 2 resonance. For small but non-vanishing forcing strength, a semi-global normal form system is found by averaging and applying a van der Pol transformation. The bifurcation diagram is organized by a codimension 3 singularity of nilpotent-elliptic type. A fairly complete analysis of local bifurcations is given; moreover, all the non-local bifurcation curves predicted by Dumortier et al (1991 Bifurcations of Planar Vector Fields (Lecture Notes in Mathematics vol 1480) (Berlin: Springer)), excepting boundary bifurcations, are found numerically.

[1]  B. Van Der Pol,et al.  Forced Oscillations in a Circuit with Nonlinear Resistance , 1924 .

[2]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[3]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[4]  M. L. Cartwright,et al.  Forced oscillations in nearly sinusoidal systems , 1948 .

[5]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[6]  J. J. Stoker Nonlinear Vibrations in Mechanical and Electrical Systems , 1950 .

[7]  J. Moser Combination tones for Duffing's equation , 1965 .

[8]  Quasi-periodic solutions of nonlinear ordinary differential equations with small damping , 1967 .

[9]  Floris Takens,et al.  Unfoldings of certain singularities of vectorfields: Generalized Hopf bifurcations , 1973 .

[10]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[11]  R. I. Bogdanov Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues , 1975 .

[12]  David A. Rand,et al.  Bifurcations of the forced van der Pol oscillator , 1978 .

[13]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[15]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[16]  J. Gambaudo Perturbation of a Hopf Bifurcation by an External Time- Periodic Forcing , 1985 .

[17]  Alain Chenciner,et al.  Bifurcations De Points Fixes Elliptiques , 1985 .

[18]  Alain Chenciner,et al.  Bifurcations de points fixes elliptiques. II. Orbites periodiques et ensembles de Cantor invariants , 1985 .

[19]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[20]  H. Broer,et al.  On a quasi-periodic Hopf bifurcation , 1987 .

[21]  Freddy Dumortier,et al.  Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3 , 1987, Ergodic Theory and Dynamical Systems.

[22]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[23]  J. Ross,et al.  A detailed study of a forced chemical oscillator: Arnol'd tongues and bifurcation sets , 1989 .

[24]  Hendrik Broer,et al.  Formally symmetric normal forms and genericity , 1989 .

[25]  George Huitema,et al.  Unfoldings and Bifurcations of Quasi-Periodic Tori , 1990 .

[26]  Robert Roussarie,et al.  Bifurcations of planar vector fields , 1990 .

[27]  J. Guckenheimer,et al.  Simple Resonance Regions of Torus Diffeomorphisms , 1991 .

[28]  Gert Vegter,et al.  Bifurcational Aspects of Parametric Resonance , 1992 .

[29]  Robert Roussarie,et al.  On the Bogdanov-Takens bifurcation for planar diffeomorphisms , 1993 .

[30]  J. Norris The closing of Arnol'd tongues for a periodically forced limit cycle , 1993 .

[31]  Bernd Krauskopf The Bifurcation Set for the 1: 4 Resonance Problem , 1994, Exp. Math..

[32]  Bernd Krauskopf,et al.  Bifurcation sequences at 1:4 resonance: an inventory , 1994 .

[33]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[34]  George Huitema,et al.  Quasi-Periodic Motions in Families of Dynamical Systems: Order amidst Chaos , 2002 .

[35]  C. Simó,et al.  On quasi-periodic perturbations of elliptic equilibrium points , 1996 .

[36]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[37]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[38]  Robert Roussarie,et al.  Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms , 1996, Ergodic Theory and Dynamical Systems.

[39]  Àngel Jorba,et al.  On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations , 1997 .

[40]  B. Krauskopf Bifurcations at $\infty$ in a model for 1:4 resonance , 1997, Ergodic Theory and Dynamical Systems.

[41]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[42]  Santiago Ibáñez,et al.  Singularities of vector fields on , 1998 .

[43]  Florian Wagener,et al.  Resonances in skew and reducible quasi-periodic Hopf bifurcations , 2000 .

[44]  Bernd Krauskopf,et al.  Strong resonances and Takens’s Utrecht preprint , 2001 .

[45]  F. Wagener Semi-local analysis of the k:1 and k:2 resonances in quasi-periodically forced systems , 2001 .

[46]  G. Vegter,et al.  Global Analysis of Dynamical Systems: Festschrift dedicated to Floris Takens for his 60th birthday , 2001 .

[47]  H. Broer,et al.  Global Analysis of Dynamical Systems , 2001 .

[48]  F. Takens Forced oscillations and bifurcations , 2001 .

[49]  Bruce B. Peckham,et al.  Lighting Arnold flames: Resonance in doubly forced periodic oscillators , 2002 .

[50]  Heinz Hanßmann,et al.  Normal-internal resonances in quasi-periodically forced oscillators: a conservative approach , 2003 .

[51]  Martin Golubitsky,et al.  The geometry of resonance tongues: a singularity theory approach , 2003 .

[52]  Duane C. Hanselman,et al.  Mastering MATLAB , 2004 .

[53]  Willy Govaerts,et al.  Numerical Continuation of Bifurcations of Limit Cycles in MATLAB , 2005, SIAM J. Sci. Comput..

[54]  F. Wagener On the quasi-periodic d-fold degenerate bifurcation , 2005 .

[55]  Yuri A. Kuznetsov,et al.  Multiparametric Bifurcation Analysis of a Basic Two-Stage Population Model , 2006, SIAM J. Appl. Math..

[56]  H. Hanßmann Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples , 2006 .

[57]  Yu. A. Kuznetsov,et al.  Remarks on interacting Neimark–Sacker bifurcations , 2006 .

[58]  H. Broer,et al.  A Predator-Prey Model with Non-Monotonic Response Function , 2006 .

[59]  Florian Wagener,et al.  Organising Centres in the Semi-global Analysis of Dynamical Systems , 2007 .

[60]  Hendrik Broer,et al.  Survey of strong normal-internal k: l resonances in quasi-periodically driven oscillators for l= 1, 2, 3 , 2007 .

[61]  Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neimark-Sacker families , 2008 .

[62]  Geometry and dynamics of mildly degenerate Hopf–Neĭmarck–Sacker families near resonance , 2009 .

[63]  F. Wagener A parametrised version of Moser's modifying terms theorem , 2010 .