The taut string approach to statistical inverse problems: Theory and applications

Abstract A novel solution approach to a class of nonlinear statistical inverse problems with finitely many observations collected over a compact interval on the real line blurred by Gaussian white noise of arbitrary intensity is presented. Exploiting the nonparametric taut string estimator, we prove the state recovery strategy is convergent to a solution of the unnoisy problem at the rate of n − 1 ∕ 2 as the number of observations n grows to infinity. Illustrations of the method’s application to real-world examples from hydrology, civil & electrical engineering are given and an empirical study on the robustness of our approach is presented.

[1]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[2]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[3]  Alfred K. Louis Approximate inverse for linear and some nonlinear problems , 1995 .

[4]  Peter Mathé,et al.  Direct Estimation of Linear Functionals from Indirect Noisy Observations , 2002, J. Complex..

[5]  Continuous dependence on obstacles in double global obstacle problems. , 2003 .

[6]  E. Weinan,et al.  Optimal convergence rate of the universal estimation error , 2017, Research in the Mathematical Sciences.

[7]  D. Donoho Statistical Estimation and Optimal Recovery , 1994 .

[8]  Robert A. Lordo,et al.  Nonparametric and Semiparametric Models , 2005, Technometrics.

[9]  R. S. Anderssen,et al.  The Linear Functional Strategy for Improperly Posed Problems , 1986 .

[10]  Ja-Yong Koo,et al.  Optimal Rates of Convergence for Nonparametric Statistical Inverse Problems , 1993 .

[11]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[12]  G. Burton Sobolev Spaces , 2013 .

[13]  Barbara Kaltenbacher,et al.  Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.

[14]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[15]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[16]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[17]  G. Bachman Functional Analysis , 1966 .

[18]  Z. Brzeźniak On sobolev and besov spaces regularityof brownian paths , 1996 .

[19]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[20]  Jacques Simon,et al.  Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval , 1990 .

[21]  S. Ambartsumian,et al.  On the problem of vibrations of non-linear-elastic electroconductive plates in transverse and longitudinal magnetic fields , 1984 .

[22]  Clifford H. Thurber,et al.  Parameter estimation and inverse problems , 2005 .

[23]  Editors , 2003 .

[24]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[25]  W. M. C. McKenzie Examples in Structural Analysis , 2006 .

[26]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[27]  Michael A. Golberg,et al.  A method of adjoints for solving some Ill-posed equations of the first kind , 1979 .

[28]  J. Coyle Inverse Problems , 2004 .

[29]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[30]  Markus Grasmair,et al.  The Equivalence of the Taut String Algorithm and BV-Regularization , 2006, Journal of Mathematical Imaging and Vision.

[31]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[32]  Data Features , 2020, Data Intensive Industrial Asset Management.