Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation

We analyse the properties of the circum-galactic medium and the relation between its metal content and that of the stars comprising the central galaxy in eight hydrodynamical ‘zoom-in’ simulations of disc galaxy formation. The simulations employ the moving-mesh code arepo combined with a comprehensive model for the galaxy formation physics, and succeed in forming realistic late-type spirals in the set of ‘Aquarius’ initial conditions of Milky Way-sized haloes. Galactic winds signicantly inuence the morphology of the circum-galactic medium and induce bipolar features in the distribution of heavy elements. They also aect the thermodynamic properties of the circum-galactic gas by supplying an energy input that sustains its radiative losses. Although a signicant fraction of the heavy elements are transferred from the central galaxy to the halo, and even beyond the virial radius, the overall stellar metallicity distribution is broadly consistent with observations, apart from an overestimate of the [O/Fe] ratio in our default runs, an eect that can however be rectied by an increase of the adopted SN type Ia rate. All our simulations have diculty in producing stellar metallicity gradients of the same strength as observed in the Milky Way.

[1]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[2]  Revisiting the cosmic cooling crisis , 2001, astro-ph/0104041.

[3]  Timothy D. Brandt,et al.  The delay-time distribution of Type Ia supernovae from Sloan II , 2012, 1206.0465.

[4]  M. R. Haas,et al.  Abundance Gradients in the Galaxy , 2006 .

[5]  W. Dehnen,et al.  The velocity dispersion and mass profile of the Milky Way , 2006, astro-ph/0603825.

[6]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[7]  C. Brook,et al.  INTERPRETING THE EVOLUTION OF THE SIZE–LUMINOSITY RELATION FOR DISK GALAXIES FROM REDSHIFT 1 TO THE PRESENT , 2010, 1011.0432.

[8]  R. Teyssier,et al.  A sub-parsec resolution simulation of the Milky Way: global structure of the interstellar medium and properties of molecular clouds , 2013, 1307.5639.

[9]  Making Galaxies in a Cosmological Context: The Need for Early Stellar Feedback , 2012, 1208.0002.

[10]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[11]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[12]  T. M. Heckman,et al.  A High Spatial Resolution X-Ray and Hα Study of Hot Gas in the Halos of Star-forming Disk Galaxies. II. Quantifying Supernova Feedback , 2003, astro-ph/0306598.

[13]  B. Savage,et al.  Distribution and Kinematics of O VI in the Galactic Halo , 2002, astro-ph/0208140.

[14]  T. Heckman,et al.  The Metal Content of Dwarf Starburst Winds: Results from Chandra Observations of NGC 1569 , 2002, astro-ph/0203513.

[15]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[16]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[17]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[18]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[19]  J. Binney,et al.  The mode of gas accretion on to star-forming galaxies , 2010, 1001.2446.

[20]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[21]  J. Schaye,et al.  On the evolution of the H i column density distribution in cosmological simulations , 2012, 1210.7808.

[22]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[23]  B. Gibson,et al.  MAGICC haloes: confronting simulations with observations of the circumgalactic medium at z = 0 , 2011, 1112.1698.

[24]  V. Springel,et al.  The formation of disc galaxies in high-resolution moving-mesh cosmological simulations , 2013, 1305.5360.

[25]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[26]  V. Springel,et al.  MAGNETIC FIELDS IN COSMOLOGICAL SIMULATIONS OF DISK GALAXIES , 2013, 1312.2620.

[27]  Volker Springel,et al.  Moving mesh cosmology: numerical techniques and global statistics , 2011, 1109.1281.

[28]  D. Strickland,et al.  Starburst-driven galactic winds — I. Energetics and intrinsic X-ray emission , 2000, astro-ph/0001395.

[29]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[30]  Michael E. Anderson,et al.  DO HOT HALOS AROUND GALAXIES CONTAIN THE MISSING BARYONS? , 2010, 1003.3273.

[31]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[32]  M. Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. I. Dynamical and Photometric Properties of a Simulated Disk Galaxy , 2002, astro-ph/0211331.

[33]  R. Teyssier,et al.  The formation of disc galaxies in a ΛCDM universe , 2010, 1004.0005.

[34]  B. E. Reddy,et al.  Chemical compositions of stars in two stellar streams from the Galactic thick disc , 2012, 1207.0767.

[35]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[36]  J. Xavier Prochaska,et al.  THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN , 2013, 1309.6317.

[37]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[38]  Abundances for metal-poor stars with accurate parallaxes , I. Basic data , 2003, astro-ph/0303653.

[39]  Thorsten Naab,et al.  Towards a more realistic population of bright spiral galaxies in cosmological simulations , 2013, 1304.1559.

[40]  USA,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[41]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[42]  J. Bregman,et al.  A DEEP X-RAY VIEW OF THE HOT HALO IN THE EDGE-ON SPIRAL GALAXY NGC 891 , 2012, 1211.1669.

[43]  B. Weiner,et al.  PROBING THE IGM/GALAXY CONNECTION. IV. THE LCO/WFCCD GALAXY SURVEY OF 20 FIELDS SURROUNDING UV-BRIGHT QUASARS , 2011, 1103.1890.

[44]  Lars Hernquist,et al.  Following the flow: tracer particles in astrophysical fluid simulations , 2013, 1305.2195.

[45]  T. Beers,et al.  The Mass of the Milky Way: Limits from a newly assembled set of halo objects , 2002, astro-ph/0210508.

[46]  L. Armus,et al.  THE EMISSION-LINE SPECTRA OF MAJOR MERGERS: EVIDENCE FOR SHOCKED OUTFLOWS , 2012, 1205.0083.

[47]  J. Read,et al.  Unveiling the corona of the Milky Way via ram-pressure stripping of dwarf satellites , 2013, 1305.4176.

[48]  G. Bryan,et al.  The effect of feedback and reionization on star formation in low-mass dwarf galaxy haloes , 2012, 1211.1071.

[49]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[50]  J. Meiring,et al.  High-velocity clouds as streams of ionized and neutral gas in the halo of the Milky Way , 2012, 1203.2626.

[51]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[52]  J. Binney,et al.  Galactic fountains and the rotation of disc-galaxy coronae , 2011, 1103.5358.

[53]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[54]  M. Boylan-Kolchin,et al.  THE SPACE MOTION OF LEO I: THE MASS OF THE MILKY WAY'S DARK MATTER HALO , 2012, 1210.6046.

[55]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[56]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[57]  J. Bailin,et al.  Cosmological galaxy formation simulations using smoothed particle hydrodynamics , 2010 .

[58]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[59]  U. Berkeley,et al.  Moving mesh cosmology: the hydrodynamics of galaxy formation , 2011, 1109.3468.

[60]  L. Stanghellini,et al.  THE PLANETARY NEBULA POPULATION OF M33 AND ITS METALLICITY GRADIENT: A LOOK INTO THE GALAXY'S DISTANT PAST , 2009, 0901.2273.

[61]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[62]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[63]  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[64]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[65]  D. Weinberg,et al.  A BUDGET AND ACCOUNTING OF METALS AT z ∼ 0: RESULTS FROM THE COS-HALOS SURVEY , 2013, 1310.2253.

[66]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[67]  J. Bregman,et al.  THE STRUCTURE OF THE MILKY WAY'S HOT GAS HALO , 2013, 1305.2430.

[68]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[69]  S. White,et al.  There's no place like home? Statistics of Milky Way-mass dark matter haloes , 2009, 0911.4484.

[70]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[71]  Michael E. Anderson,et al.  EXTENDED HOT HALOS AROUND ISOLATED GALAXIES OBSERVED IN THE ROSAT ALL-SKY SURVEY , 2012, 1211.5140.

[72]  V. Springel,et al.  Shaping the galaxy stellar mass function with supernova- and AGN-driven winds , 2012, 1205.2694.

[73]  G. Seabroke,et al.  Local stellar kinematics from RAVE data - II. Radial metallicity gradient , 2011, 1109.6519.

[74]  V. Springel,et al.  Stellar feedback by radiation pressure and photoionization , 2013, 1310.7572.

[75]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[76]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.