A performance based study on gender recognition in large datasets

Gender recognition has achieved impressive results based on the face appearance in controlled datasets. Its application in the wild and large datasets is still a challenging task for researchers. In this paper, we make use of classical techniques to analyze their performance in controlled and uncontrolled condition respectively with the LFW and MORPH datasets. For both sets the benchmarking protocol follows the 5-fold cross-validation proposed by the BEFIT challenge.

[1]  Chun-Rong Huang,et al.  Identifying Gender from Unaligned Facial Images by Set Classification , 2010, 2010 20th International Conference on Pattern Recognition.

[2]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Frédéric Gosselin,et al.  Bubbles: a technique to reveal the use of information in recognition tasks , 2001, Vision Research.

[4]  Qian Tao,et al.  Illumination Normalization Based on Simplified Local Binary Patterns for A Face Verification System , 2007, 2007 Biometrics Symposium.

[5]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[6]  Roope Raisamo,et al.  Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[8]  Daniel González-Jiménez,et al.  Single- and cross- database benchmarks for gender classification under unconstrained settings , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[9]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Ming-Hsuan Yang,et al.  Learning Gender with Support Faces , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Yaniv Taigman,et al.  Descriptor Based Methods in the Wild , 2008 .

[12]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[13]  Sébastien Marcel,et al.  On the Recent Use of Local Binary Patterns for Face Authentication , 2007 .

[14]  Karl Ricanek,et al.  MORPH: a longitudinal image database of normal adult age-progression , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[15]  Oscar Déniz-Suárez,et al.  A comparison of face and facial feature detectors based on the Viola–Jones general object detection framework , 2011, Machine Vision and Applications.

[16]  Caifeng Shan,et al.  Learning local binary patterns for gender classification on real-world face images , 2012, Pattern Recognit. Lett..

[17]  Haizhou Ai,et al.  Demographic Classification with Local Binary Patterns , 2007, ICB.

[18]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[19]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[20]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[21]  José Miguel Buenaposada,et al.  Revisiting Linear Discriminant Techniques in Gender Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[24]  Hazim Kemal Ekenel Benchmarking Facial Image Analysis Technologies (BeFIT) , 2012, 2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA).

[25]  Andrew C. Gallagher,et al.  Understanding images of groups of people , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Rainer Lienhart,et al.  Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection , 2003, DAGM-Symposium.