SHORT-DURATION GAMMA-RAY BURSTS FROM OFF-AXIS COLLAPSARS

We present two-dimensional (2D) high-resolution hydrodynamic simulations of the relativistic outflows of long-duration gamma-ray burst (GRB) progenitors. We analyze the properties of the outflows at wide off-axis angles, produced by the expansion of the hot cocoon that surrounds the jet inside the progenitor star. We find that the cocoon emission at wide angles may have properties similar to those of the subclass of short-duration GRBs with persistent X-ray emission. We compute the predicted duration distribution, redshift distribution, and afterglow brightness, and we find that they are all in agreement with the observed properties of short GRBs with persistent emission. We suggest that a supernova component, the properties of the host galaxies, and late afterglow observations can be used as a crucial test to verify this model.

[1]  P. O’Brien,et al.  ARE ALL SHORT–HARD GAMMA-RAY BURSTS PRODUCED FROM MERGERS OF COMPACT STELLAR OBJECTS? , 2009, 0909.1850.

[2]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[3]  E. Berger,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SHORT GAMMA-RAY BURST HOST GALAXIES: MORPHOLOGIES, OFFSETS, AND LOCAL ENVIRONMENTS , 2009, 0909.1804.

[4]  William H. Lee,et al.  Gamma-ray bursts: Maybe not so old after all , 2009, Nature.

[5]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[6]  Xue-Feng Wu,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 AN UP-SCATTERED COCOON EMISSION MODEL OF GAMMA-RAY BURST HIGH-ENERGY LAGS , 2022 .

[7]  Davide Lazzati,et al.  VERY HIGH EFFICIENCY PHOTOSPHERIC EMISSION IN LONG-DURATION γ-RAY BURSTS , 2009, 0904.2779.

[8]  Bing Zhang,et al.  DISCERNING THE PHYSICAL ORIGINS OF COSMOLOGICAL GAMMA-RAY BURSTS BASED ON MULTIPLE OBSERVATIONAL CRITERIA: THE CASES OF z = 6.7 GRB 080913, z = 8.2 GRB 090423, AND SOME SHORT/HARD GRBs , 2009, 0902.2419.

[9]  A. MacFadyen,et al.  THE DYNAMICS AND AFTERGLOW RADIATION OF GAMMA-RAY BURSTS. I. CONSTANT DENSITY MEDIUM , 2009, 0902.2396.

[10]  M. Rowan-Robinson,et al.  A new model for infrared and submillimetre counts , 2008, 0812.2609.

[11]  S. Dado,et al.  SHORT HARD GAMMA-RAY BURSTS AND THEIR AFTERGLOWS , 2008, 0807.1962.

[12]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[13]  G. Ghisellini,et al.  Peak energy of the prompt emission of long gamma-ray bursts versus their fluence and peak flux , 2008, 0807.4931.

[14]  E. Berger THE HOST GALAXIES OF SHORT-DURATION GAMMA-RAY BURSTS: LUMINOSITIES, METALLICITIES, AND STAR FORMATION RATES , 2008, 0805.0306.

[15]  B. Metzger,et al.  Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down , 2007, 0712.1233.

[16]  D. Proga,et al.  Low Angular Momentum Accretion in the Collapsar: How Long Can a Long GRB Be? , 2007, 0708.2711.

[17]  Giancarlo Cusumano,et al.  Different progenitors of short hard gamma-ray bursts , 2007, 0711.3034.

[18]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[19]  N. Gehrels,et al.  Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614 , 2006, astro-ph/0612238.

[20]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[21]  D. Lazzati,et al.  Temporal and Angular Properties of GRB Jets Emerging from Massive Stars , 2006 .

[22]  D. Lazzati,et al.  Temporal and Angular Properties of Gamma-Ray Burst Jets Emerging from Massive Stars , 2006, astro-ph/0609254.

[23]  L. Kewley,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[24]  L. A. Antonelli,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[25]  William H. Lee,et al.  The progenitors of short gamma-ray bursts , 2006, astro-ph/0701874.

[26]  M. Rees,et al.  Radiation from an Expanding Cocoon as an Explanation of the Steep Decay Observed in GRB Early Afterglow Light Curves , 2006, astro-ph/0603343.

[27]  D. Lamb,et al.  A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors , 2006, astro-ph/0601458.

[28]  P. Mazzali,et al.  Optical Emission from Aspherical Supernovae and the Hypernova SN 1998bw , 2005, astro-ph/0511389.

[29]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[30]  J.-L. Atteia,et al.  Discovery of the short γ-ray burst GRB 050709 , 2005, Nature.

[31]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[32]  Jesper Sollerman,et al.  The optical afterglow of the short γ-ray burst GRB 050709 , 2005, Nature.

[33]  T. Sakamoto,et al.  A short γ-ray burst apparently associated with an elliptical galaxy at redshift z = 0.225 , 2005, Nature.

[34]  K. Toma,et al.  Ep-Eiso Correlation in a Multiple Subjet Model of Gamma-Ray Bursts , 2005, astro-ph/0504624.

[35]  D. Lazzati,et al.  Universal GRB Jets from Jet-Cocoon Interaction in Massive Stars , 2005, astro-ph/0502084.

[36]  K. Toma,et al.  A Possible Origin of Bimodal Distribution of Gamma-Ray Bursts , 2004, astro-ph/0407012.

[37]  J. Salmonson,et al.  The polarization of afterglow emission reveals γ‐ray bursts jet structure , 2004, astro-ph/0401124.

[38]  Cosmology,et al.  Gamma ray bursts as electromagnetic outflows , 2003, astro-ph/0312347.

[39]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[40]  Elena M. Rossi,et al.  Afterglow Lightcurves, Viewing Angle and the Jet Structure of Gamma‐Ray Bursts , 2003 .

[41]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[42]  M. Rees,et al.  Events in the life of a cocoon surrounding a light, collapsar jet , 2002, astro-ph/0205108.

[43]  Bing Zhang,et al.  Gamma-Ray Burst Beaming: A Universal Configuration with a Standard Energy Reservoir? , 2001, astro-ph/0112118.

[44]  M. Rees,et al.  Afterglow light curves, viewing angle and the jet structure of γ-ray bursts , 2001, astro-ph/0112083.

[45]  A. MacFadyen,et al.  Precursors and e ± pair loading from erupting fireballs , 2001, astro-ph/0111342.

[46]  E. Ramirez-Ruiz,et al.  Possible detection of hard X-ray afterglows of short $\gamma$-ray bursts , 2001, astro-ph/0110215.

[47]  A. Panaitescu,et al.  Jet Energy and Other Parameters for the Afterglows of GRB 980703, GRB 990123, GRB 990510, and GRB 991216 Determined from Modeling of Multifrequency Data , 2000, astro-ph/0010257.

[48]  P. Madau,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 ON THE ASSOCIATION OF GAMMA–RAY BURSTS WITH MASSIVE STARS: IMPLICATIONS FOR NUMBER COUNTS AND LENSING STATISTICS , 2000 .

[49]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[50]  T. Piran Gamma-ray bursts and the fireball model , 1998, astro-ph/9810256.

[51]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[52]  L. A. Antonelli,et al.  Discovery of the X-Ray Afterglow of the Gamma-Ray Burst of February 28 1997 , 1997, astro-ph/9706065.

[53]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[54]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[55]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[56]  Yu. A. Gur'yan,et al.  Catalog of cosmic gamma-ray bursts from the KONUS experiment data , 1981 .