Two-Player Games on Cellular Automata

Cellular automata games have traditionally been solitaire games. We define a two-player cellular automata game played on a finite cyclic digraph G = (V,E). Each vertex assumes a weight w I {0,1}. A move consists of selecting a vertex u with w(u) = 1 and firing it, i.e., complementing its weight and that of a selected neighborhood of u. The player first making all weights 0 wins, and the opponent loses. If there is no last move, the outcome is a draw. The main part of the paper consists of constructing a polynomial strategy. The 3-fold motivation for exploring these games stems from complexity considerations in combinatorial game theory, transforming the hitherto solitaire cellular automata games into two-player games, and the theory of linear error correcting codes.

[1]  Tamás Lengyel,et al.  Color Switching Games , 2000, Ars Comb..

[2]  Aviezri S. Fraenkel,et al.  The generalized Sprague-Grundy function and its invariance under certain mappings , 1986, J. Comb. Theory, Ser. A.

[3]  C. Sadler,et al.  Lights Out , 2000 .

[4]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[5]  Thomas S. Ferguson,et al.  Misère Annihilation Games , 1984, J. Comb. Theory, Ser. A.

[6]  Cedric A. B. Smith Graphs and composite games , 1966 .

[7]  A. Fraenkel,et al.  Theory of annihilation games—I☆ , 1982 .

[8]  J. Lambek,et al.  On Some two way Classifications of Integers , 1959, Canadian Mathematical Bulletin.

[9]  Aviezri S. Fraenkel,et al.  PSPACE-hardness of some combinatorial games , 1987, J. Comb. Theory, Ser. A.

[10]  Aviezri S. Fraenkel Error-Correcting Codes Derived from Combinatorial Games , 1995 .

[11]  Aviezri S. Fraenkel,et al.  Combinatorial games with an annihilation rule , 1974 .

[12]  Cristóbal Pareja-Flores,et al.  Two Reflected Analyses of Lights Out , 2001 .

[13]  Aviezri S. Fraenkel,et al.  Complexity of problems in games, graphs and algebraic equations , 1979, Discret. Appl. Math..

[14]  D. L. Stock Merlin's magic square revisited , 1989 .

[15]  Criel Merino López Chip firing and the tutte polynomial , 1997 .

[16]  Aviezri S. Fraenkel,et al.  Virus Versus Mankind , 2000, Computers and Games.

[17]  A. Blokhuis Winning ways for your mathematical plays , 1984 .

[18]  Edward M. Reingold,et al.  The Complexity of Pursuit on a Graph , 1995, Theor. Comput. Sci..

[19]  Klaus Sutner,et al.  Linear cellular automata and the garden-of-eden , 1989 .

[20]  Peter Winkler,et al.  Universal configurations in light-flipping games , 2001, SODA '01.

[21]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[22]  John H. Conway,et al.  Integral lexicographic codes , 1990, Discret. Math..

[23]  Richard A. Weida,et al.  An Easy Solution to Mini Lights Out , 2001 .

[24]  Norman Biggs,et al.  Chip-Firing and the Critical Group of a Graph , 1999 .

[25]  Klaus Sutner,et al.  The σ-game and cellular automata , 1990 .

[26]  N. J. A. Sloane,et al.  Lexicographic codes: Error-correcting codes from game theory , 1986, IEEE Trans. Inf. Theory.

[27]  Eric Goles,et al.  Sand Piles, Combinatorial Games and Cellular Automata , 1991 .

[28]  Roger F. Wheeler,et al.  Algebra : a modern introduction , 1971, The Mathematical Gazette.

[29]  Donald H. Pelletier Merlin's magic square , 1987 .

[30]  A. Fraenkel Scenic Trails Ascending from Sea-Level Nim to Alpine Chess , 1995, math/9503222.

[31]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.