A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air

A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good operational stability under illumination (1000 W m−2, AM1.5G, 72 ± 2 °C, 35 ± 5% relative humidity) for 100 h with a 20% loss in efficiency with respect to the initial performance. The dark storability (darkness, 25 °C, 35 ± 5% relative humidity) has been shown to exceed six months without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl)-oxy-carbonyldithiophene) (P3MHOCT), which through a thermal treatment is converted to the insoluble form poly(3-carboxydithiophene) (P3CT) that generally gives stable polymer solar cells. The devices employed a solution based silver back electrode. One advantage is that preparation of the devices is very simple and can be carried out by hand under ambient conditions, requiring only a hot plate that can reach a temperature of 210 °C, and preferably also a spincoater. This type of device is thus excellently suited for teaching and demonstration purposes provided that the materials are at hand.

[1]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[2]  F. Krebs Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes , 2008 .

[3]  O. Bunk,et al.  Simulating X-ray diffraction of textured films , 2008 .

[4]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[5]  Jan Genoe,et al.  Solar cells utilizing small molecular weight organic semiconductors , 2007 .

[6]  F. Krebs,et al.  A Route to Stable Nanostructures in Conjugated Polymers , 2007 .

[7]  F. Krebs,et al.  Polythiophene by solution processing , 2007 .

[8]  Kion Norrman,et al.  Detrimental Effect of Inert Atmospheres on Hybrid Solar Cells Based on Semiconductor Oxides , 2007 .

[9]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[10]  F. Krebs,et al.  Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells , 2006 .

[11]  F. Krebs,et al.  Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation , 2006 .

[12]  R. Seshadri,et al.  Organic Phase Conversion of Bulk (Wurtzite) ZnO to Nanophase (Wurtzite and Zinc Blende) ZnO. , 2006 .

[13]  R. Seshadri,et al.  Organic phase conversion of bulk (wurtzite) ZnO to nanophase (wurtzite and zinc blende) ZnO , 2005 .

[14]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[15]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[16]  Frederik C. Krebs,et al.  Significant Improvement of Polymer Solar Cell Stability , 2005 .

[17]  Jean M. J. Fréchet,et al.  Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability , 2005 .

[18]  R. P. Bertram,et al.  Investigation of chromophore-chromophore interaction by electro-optic measurements, linear dichroism, x-ray scattering, and density-functional calculations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  M. Grätzel,et al.  Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[20]  Xiaoniu Yang,et al.  Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. , 2005, The journal of physical chemistry. B.

[21]  Xiaoniu Yang,et al.  Nanoscale morphology of high-performance polymer solar cells. , 2005, Nano letters.

[22]  Myrtil L. Kahn,et al.  Size‐ and Shape‐Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method , 2005 .

[23]  Ilan Gur,et al.  Hybrid Organic-Nanocrystal Solar Cells , 2005 .

[24]  Stephen R. Forrest,et al.  The Limits to Organic Photovoltaic Cell Efficiency , 2005 .

[25]  Michael D. McGehee,et al.  Ordered Organic-Inorganic Bulk Heterojunction Photovoltaic Cells , 2005 .

[26]  Michael Grätzel,et al.  Dye-Sensitized Solid-State Heterojunction Solar Cells , 2005 .

[27]  René A. J. Janssen,et al.  Polymer-Fullerene Bulk Heterojunction Solar Cells , 2005 .

[28]  J. Fréchet,et al.  Polythiophene containing thermally removable solubilizing groups enhances the interface and the performance of polymer-titania hybrid solar cells. , 2004, Journal of the American Chemical Society.

[29]  Barry P Rand,et al.  4.2% efficient organic photovoltaic cells with low series resistances , 2004 .

[30]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[31]  Peter C. Searson,et al.  Quenching of Growth of ZnO Nanoparticles by Adsorption of Octanethiol , 2002 .

[32]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[33]  M. Anderson,et al.  Visible Luminescence and Surface Properties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate , 1998 .

[34]  Greg P. Smestad,et al.  Education and solar conversion:: Demonstrating electron transfer , 1998 .

[35]  Greg P. Smestad,et al.  Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter , 1998 .

[36]  Greg P. Smestad,et al.  Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode , 1997 .

[37]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[38]  G. Beaucage,et al.  Structural studies of complex systems using small-angle scattering: a unified Guinier/power-law approach☆ , 1994 .

[39]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[40]  Jerome B. Cohen,et al.  Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth , 1989 .

[41]  R. J. Baxter Percus-Yevick Equation for Hard Spheres with Surface Adhesion , 1968 .

[42]  Bruno H. Zimm,et al.  Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering; Preliminary Results on Polystyrene Solutions , 1948 .

[43]  H. Kiessig Interferenz von Röntgenstrahlen an dünnen Schichten , 1930, Naturwissenschaften.

[44]  G. Schulz Über die Kinetik der Kettenpolymerisationen. V. , 1939 .

[45]  E. Husemann.,et al.  Über die Kinetik der Kettenpolymerisationen , 1936 .

[46]  W. Bragg,et al.  The structure of thin films of certain metallic oxides , 1932 .