Markov Data-Based Reference Tracking of Tensegrity Morphing Airfoils

This letter presents a data-based control design for reference tracking applications. This design finds the optimal control sequence, which minimizes a quadratic cost function consisting of tracking error and input increments over a finite interval [0,N]. The only information needed is the first N+1 Markov parameters of the system. This design is employed on a tensegrity morphing airfoil whose topology has been described in detail in this letter. A NACA 2412 airfoil with specified morphing targets is chosen to verify the developed design. The principle developed in this letter is also applicable to other structural control problems.

[1]  Alice M. Agogino,et al.  Inverse Statics Optimization for Compound Tensegrity Robots , 2020, IEEE Robotics and Automation Letters.

[2]  R. Skelton,et al.  Markov Data-Based LQG Control , 2000 .

[3]  Pierre Renaud,et al.  Design of Tensegrity-Based Manipulators: Comparison of Two Approaches to Respect a Remote Center of Motion Constraint , 2020, IEEE Robotics and Automation Letters.

[4]  D. Ingber,et al.  Self-assembly of three-dimensional prestressed tensegrity structures from DNA , 2010 .

[5]  Robert E. Skelton,et al.  Design of a new tensegrity cantilever structure , 2020 .

[6]  K. Furuta,et al.  Dynamic compensator design for discrete-time LQG problem using Markov parameters , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[7]  Robert E. Skelton,et al.  Gyroscopic Tensegrity Robots , 2020, IEEE Robotics and Automation Letters.

[8]  Rakesh K. Kapania,et al.  Optimal Energy Harvesting from a Membrane Attached to a Tensegrity Structure , 2013 .

[9]  R. Motro,et al.  Tensegrity Systems , 2003 .

[10]  Graham Scarr,et al.  A consideration of the elbow as a tensegrity structure , 2012 .

[11]  Rebecca Kramer-Bottiglio,et al.  Rolling Soft Membrane-Driven Tensegrity Robots , 2020, IEEE Robotics and Automation Letters.

[12]  莊哲男 Applied System Identification , 1994 .

[13]  Suman Chakravorty,et al.  Model and Data Based Approaches to the Control of Tensegrity Robots , 2020, IEEE Robotics and Automation Letters.

[14]  Steven L. Miller,et al.  Molecular Orientation and Two-Component Nature of the Crystalline Fraction of Spider Dragline Silk , 2007 .

[15]  Dario Floreano,et al.  Bio-inspired Tensegrity Fish Robot , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[16]  D. Ingber,et al.  Mechanical behavior in living cells consistent with the tensegrity model , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Robert E. Skelton,et al.  Design and analysis of a growable artificial gravity space habitat , 2020 .

[18]  Minh Q. Phan,et al.  Identification of a Multistep-Ahead Observer and Its Application to Predictive Control , 1997 .

[19]  Robert E. Skelton,et al.  Deployable Tensegrity Lunar Tower , 2020 .

[20]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[21]  Robert E. Skelton,et al.  MOTES: Modeling of Tensegrity Structures , 2019, J. Open Source Softw..

[22]  Koichi Suzumori,et al.  New Soft Robot Hand Configuration With Combined Biotensegrity and Thin Artificial Muscle , 2020, IEEE Robotics and Automation Letters.

[23]  George A. Lesieutre,et al.  Deployment of n-Strut Cylindrical Tensegrity Booms , 2020 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  Robert E. Skelton,et al.  Design and control of tensegrity morphing airfoils , 2020 .

[26]  Robert E. Skelton,et al.  A general approach to minimal mass tensegrity , 2020 .

[27]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[28]  Xin Zhang,et al.  Data-Driven Robust Approximate Optimal Tracking Control for Unknown General Nonlinear Systems Using Adaptive Dynamic Programming Method , 2011, IEEE Transactions on Neural Networks.

[29]  Marco Pavone,et al.  Soft Tensegrity Systems for Planetary Landing and Exploration , 2020, ArXiv.

[30]  Katsuhisa Furuta,et al.  Closed-form solutions to discrete-time LQ optimal control and disturbance attenuation , 1993 .