Simulation dynamique et commande non lineaire des colonnes a distiller

Le probleme principal aborde dans cette these est la commande en qualite des colonnes a distiller. Les modeles de commande utilises sont construits a partir de modeles dynamiques classiques issus d'une analyse physique. La methode de construction repose sur une reduction par echelle de temps de ces derniers. Cette reduction a pour but de ne conserver que les phenomenes lents. Sur ces modeles reduits, nous appliquons des techniques de rejet de perturbations par retour non lineaire de l'etat. Les lois de commande obtenues sont testees en simulation sur des modeles dynamiques de colonne, decrits par des systemes algebro-differentiels d'index 1, nettement plus complets que les modeles de commande. Cette etude en simulation montre, pour une colonne binaire de 42 plateaux et pour une colonne multi-composes de 32 plateaux, la robustesse et l'interet de ces lois non lineaires de commande. La mise en œuvre sur deux colonnes de raffinerie confirme ces resultats. Elle montre egalement que l'instrumentation des colonnes et la puissance des ordinateurs de conduite sont suffisantes pour un calcul en ligne de ces lois non lineaires de commande. Un probleme important, dont nous avons pris conscience lors de l'etude en simulation, concerne la resolution numerique des systemes algebro-differentiels. En nous appuyant sur des resultats recents relatifs 'a l'inversion de systemes dynamiques, nous etendons les notions d'index et de forme canonique, notions definies uniquement en lineaire et cependant tres utilisees pour analyser la convergence des schemas numeriques de resolution, aux systemes algebro-differentiels non lineaires implicites. Nous proposons egalement un algorithme formel et explicite de reduction d'index, afin de transformer des systemes d'index eleves pour lesquels les methodes de resolution numeriques font defaut, en systemes d'index 1 pour lesquels existent des methodes de resolution numerique performantes.

[1]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[2]  W. Luyben,et al.  Control of high-purity distillation columns , 1983 .

[3]  P. Rouchon,et al.  Disturbances Rejection and Integral Control of Aggregated Nonlinear Distillation Models , 1986 .

[4]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[5]  R. F. Sincovec,et al.  Analysis of descriptor systems using numerical algorithms , 1981 .

[6]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[7]  Ilya Prigogine,et al.  Structure , stabilité et fluctuations , 1971 .

[8]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[9]  Kurt V. Waller,et al.  ON MODELING ACCURACY FOR MULTIVARIABLE DISTILLATION CONTROL , 1982 .

[10]  M. Morari,et al.  Implications of large RGA elements on control performance , 1987 .

[11]  William L. Luyben,et al.  Use of multiple temperatures for the control of multicomponent distillation columns , 1984 .

[12]  Alan C. Hindmarsh,et al.  A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations , 1975, TOMS.

[13]  Linda R. Petzold,et al.  Recent developments in the numerical solution of differential/algebraic systems , 1989 .

[14]  Constantinos C. Pantelides,et al.  The Dynamic Simulation of Transient Systems Described by Index Two Differential-algebraic Equations , 1988 .

[15]  H. H. Rosenbrock,et al.  Computer Aided Control System Design , 1974, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  William L. Luyben,et al.  Derivation of transfer functions for highly nonlinear distillation columns , 1987 .

[17]  H.H. Rosenbrock A Lyapunov function with applications to some nonlinear physical systems , 1963, Autom..

[18]  J. Levine,et al.  C.A.D. for Nonlinear Systems Decoupling, Perturbations Rejection and Feedback Linearization with Applications to the Dynamic Control of a Robot Arm , 1986 .

[19]  George Stephanopoulos,et al.  Chemical Process Control: An Introduction to Theory and Practice , 1983 .

[20]  A. Isidori,et al.  Local stabilization of minimum-phase nonlinear systems , 1988 .

[21]  Triantafillos J. Mountziaris,et al.  Design of robust noninteracting controllers for high-purity binary distillation columns , 1988 .

[22]  Michael L. Michelsen,et al.  Application of semi-implicit Runge—Kutta methods for integration of ordinary and partial differential equations , 1977 .

[23]  C. D. Holland,et al.  Gear's procedure for the simultaneous solution of differential and algebraic equations with application to unsteady state distillation problems , 1982 .

[24]  L. Petzold Differential/Algebraic Equations are not ODE's , 1982 .

[25]  J. D. Perkins,et al.  Properties of liquid-vapour composition surface at azeotropic points , 1977 .

[26]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[27]  William L. Luyben,et al.  Nonlinear dynamic matrix control for high‐purity distillation columns , 1988 .

[28]  Thomas J. McAvoy,et al.  Degeneracy of Decoupling in Distillation Columns , 1978 .

[29]  Riccardo Marino,et al.  A geometric approach to nonlinear singularly perturbed control systems, , 1988, Autom..

[30]  F. P. Bowden,et al.  Chemical Thermodynamics , 1947, Nature.

[31]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[32]  M. Morari,et al.  Some new properties of the structured singular value , 1988 .

[33]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[34]  Thomas J. McAvoy,et al.  Dynamic energy conservation aspects of distillation control , 1985 .

[35]  C. W. Gear,et al.  Simultaneous Numerical Solution of Differential-Algebraic Equations , 1971 .

[36]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[37]  Władysław Malesinśki,et al.  Azeotropy and Other Theoretical Problems of Vapour-Liquid Equilibrium , 1965 .

[38]  W. Rheinboldt Differential-algebraic systems as differential equations on manifolds , 1984 .

[39]  Sigurd Skogestad,et al.  Control configuration selection for distillation columns , 1987 .

[40]  P. Kokotovic Applications of Singular Perturbation Techniques to Control Problems , 1984 .

[41]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[42]  C. Kravaris,et al.  Nonlinear State Feedback Synthesis by Global Input/Output Linearization , 1986, 1986 American Control Conference.

[43]  Per Lötstedt,et al.  Numerical solution of nonlinear differential equations with algebraic constraints I: Convergence results for backward differentiation formulas , 1986 .

[44]  M. Fliess Automatique et corps différentiels , 1989 .

[45]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[46]  M. Fliess A note on the invertibility of nonlinear input-output differential systems , 1986 .

[47]  Warren D. Seider,et al.  Dynamic simulation of azeotropic distillation towers , 1983 .

[48]  R. Hirschorn Invertibility of multivariable nonlinear control systems , 1979 .

[49]  Ioan Doré Landau,et al.  Reduced order bilinear models for distillation columns , 1978, Autom..

[50]  Michael F. Doherty,et al.  On the dynamics of distillation processes—IV Uniqueness and stability of the steady state in homogeneous continuous distillations , 1982 .

[51]  C. Georgakis,et al.  Independent Single-input-single Output Control Schemes for Dual Composition Control of Binary Distillation Columns , 1986 .

[52]  Dale E. Seborg,et al.  Dyanmic compartmental models for separation processes , 1986 .

[53]  Chun-Wen Ll,et al.  Functional reproducibility of general multivariable analytic non-linear systems , 1987 .

[54]  Constantinos C. Pantelides,et al.  SpeedUp—recent advances in process simulation , 1988 .

[55]  C. D. Holland History of the development of distillation computer models , 1983 .

[56]  H. Nijmeijer,et al.  Dynamic input-output decoupling of nonlinear control systems , 1988 .

[57]  Sigurd Skogestad,et al.  Robust control of ill-conditioned plants: high-purity distillation , 1988 .

[58]  M. Morari,et al.  LV-Control of a high-purity distillation column , 1987 .

[59]  R. Hirschorn Invertibility of Nonlinear Control Systems , 1979 .

[60]  D. Seborg,et al.  A multivariable nonlinear self‐tuning controller , 1987 .

[61]  C. D. Holland,et al.  Development and comparison of a generalized semi-implicit Runge-Kutta method with Gear's method for systems of coupled differential and algebraic equations , 1984 .

[62]  Kurt V. Waller,et al.  Decoupler design and control system tuning by INA for distillation composition control , 1985 .

[63]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[64]  Kurt V. Waller,et al.  Decoupling in distillation , 1974 .

[65]  J. Lévine,et al.  A fast graph theoretic algorithm for the feedback decoupling problem of nonlinear systems , 1984 .

[66]  Henrik Weisberg Andersen,et al.  Controller adjustment for improved nominal performance and robustness. II: Robust geometric control of a distillation column , 1987 .

[67]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[68]  Pierre Van Rysselberghe,et al.  Introduction to Thermodynamics of Irreversible Processes. , 1956 .

[69]  L. Silverman Inversion of multivariable linear systems , 1969 .

[70]  J. Descusse,et al.  Dynamic decoupling for right-invertible nonlinear systems , 1987 .

[71]  Sahjendra N. Singh A modified algorithm for invertibility in nonlinear systems , 1981 .

[72]  C. W. Gear,et al.  ODE METHODS FOR THE SOLUTION OF DIFFERENTIAL/ALGEBRAIC SYSTEMS , 1984 .

[73]  C. Pantelides The consistent intialization of differential-algebraic systems , 1988 .

[74]  Kurt E. Häggblom,et al.  An experimental comparison of four control structures for two-point control of distillation , 1988 .

[75]  Vladimir Igorevich Arnolʹd,et al.  Équations différentielles ordinaires , 1974 .