Efficient Small Bandgap Polymer Solar Cells with High Fill Factors for 300 nm Thick Films

A high-molecular-weight conjugated polymer based on alternating electron-rich and electron-deficient fused ring systems provides efficient polymer solar cells when blended with C60 and C70 fullerene derivatives. The morphology of the new polymer/fullerene blend reduces bimolecular recombination and allows reaching high fill factors and power conversion efficiencies for films up to 300 nm thickness.

[1]  Youngkyoo Kim,et al.  Organic solar cells with submicron-thick polymer:fullerene bulk heterojunction films , 2010 .

[2]  Guillermo C Bazan,et al.  Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. , 2009, Nature chemistry.

[3]  Mm Martijn Wienk,et al.  Narrow‐Bandgap Diketo‐Pyrrolo‐Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance , 2008 .

[4]  J. Cho,et al.  Importance of Solubilizing Group and Backbone Planarity in Low Band Gap Polymers for High Performance Ambipolar field-effect Transistors , 2012 .

[5]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[6]  Yongfang Li,et al.  Poly(thieno[3,2-b]thiophene-alt-bithiazole): A D–A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-C60 Bisadduct Acceptor , 2012 .

[7]  Jan Gilot,et al.  Optimizing Polymer Tandem Solar Cells , 2010, Advanced materials.

[8]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[9]  G. Dennler,et al.  Bulk heterojunction solar cells with thick active layers and high fill factors enabled by a bithiophene-co-thiazolothiazole push-pull copolymer , 2011 .

[10]  R. Janssen,et al.  The effect of bias light on the spectral responsivity of organic solar cells , 2012 .

[11]  P. Sonar,et al.  Poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione-co-thieno[3,2-b]thiophene): a high performance polymer semiconductor for both organic thin film transistors and organic photovoltaics. , 2012, Physical chemistry chemical physics : PCCP.

[12]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[13]  Yingying Fu,et al.  Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications , 2011 .

[14]  Yang Yang,et al.  Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. , 2012, Journal of the American Chemical Society.

[15]  S. Bauer,et al.  Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors , 2005 .

[16]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[17]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[18]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[19]  Prashant Sonar,et al.  A High Mobility P‐Type DPP‐Thieno[3,2‐b]thiophene Copolymer for Organic Thin‐Film Transistors , 2010, Advanced materials.

[20]  Weiwei Li,et al.  Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. , 2012, Journal of the American Chemical Society.

[21]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[22]  Long Ye,et al.  From Binary to Ternary Solvent: Morphology Fine‐tuning of D/A Blends in PDPP3T‐based Polymer Solar Cells , 2012, Advanced materials.

[23]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[24]  Henning Sirringhaus,et al.  High‐Performance Ambipolar Diketopyrrolopyrrole‐Thieno[3,2‐b]thiophene Copolymer Field‐Effect Transistors with Balanced Hole and Electron Mobilities , 2012, Advanced materials.

[25]  K. Wei,et al.  Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells. , 2011, Chemical communications.

[26]  Yongfang Li,et al.  Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System , 2012, Advanced materials.

[27]  M. Toney,et al.  Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. , 2012, Journal of the American Chemical Society.

[28]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[29]  R. Janssen,et al.  Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells , 2011 .

[30]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[31]  R. J. Kline,et al.  Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. , 2011, Journal of the American Chemical Society.