Validated Solutions of Saddle Point Linear Systems

We propose a fast verification method for saddle point linear systems where the (1,1) block is singular. The proposed verification method is based on an algebraic analysis of a block diagonal preconditioner and rounding mode controlled computations. Numerical comparison of several verification methods with various block diagonal preconditioners is given.

[1]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[2]  Siegfried M. Rump,et al.  Fast verification of solutions of matrix equations , 2002, Numerische Mathematik.

[3]  Irfan Altas,et al.  Approximation of a Thin Plate Spline Smoother Using Continuous Piecewise Polynomial Functions , 2003, SIAM J. Numer. Anal..

[4]  S. Oishi,et al.  Fast Verification of Solutions for Sparse Monotone Matrix Equations , 2001 .

[5]  Xiaojun Chen,et al.  Finite Element Surface Fitting for Bridge Management , 2006, Int. J. Inf. Technol. Decis. Mak..

[6]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[7]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[8]  Siegfried M. Rump,et al.  Self-validating methods , 2001 .

[9]  S. Rump Verification methods for dense and sparse systems of equations , 1994 .

[10]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[11]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[12]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[13]  Xiaojun Chen,et al.  Numerical validation of solutions of saddle point matrix equations , 2003, Numer. Linear Algebra Appl..

[14]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .