Optimal Prediction in the Retina and Natural Motion Statistics

Almost all behaviors involve making predictions. Whether an organism is trying to catch prey, avoid predators, or simply move through a complex environment, the organism uses the data it collects through its senses to guide its actions by extracting from these data information about the future state of the world. A key aspect of the prediction problem is that not all features of the past sensory input have predictive power, and representing all features of the external sensory world is prohibitively costly both due to space and metabolic constraints. This leads to the hypothesis that neural systems are optimized for prediction. Here we describe theoretical and computational efforts to define and quantify the efficient representation of the predictive information by the brain. Another important feature of the prediction problem is that the physics of the world is diverse enough to contain a wide range of possible statistical ensembles, yet not all inputs are probable. Thus, the brain might not be a generalized predictive machine; it might have evolved to specifically solve the prediction problems most common in the natural environment. This paper summarizes recent results on predictive coding and optimal predictive information in the retina and suggests approaches for quantifying prediction in response to natural motion. Basic statistics of natural movies reveal that general patterns of spatiotemporal correlation are present across a wide range of scenes, though individual differences in motion type may be important for optimal processing of motion in a given ecological niche.

[1]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[2]  Qin Hu,et al.  A set of high-order spatiotemporal stimuli that elicit motion and reverse-phi percepts. , 2010, Journal of vision.

[3]  Eero P. Simoncelli,et al.  Efficient Coding of Spatial Information in the Primate Retina , 2012, The Journal of Neuroscience.

[4]  M. Meister,et al.  Dynamic predictive coding by the retina , 2005, Nature.

[5]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[6]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[7]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[8]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[9]  J. Changeux,et al.  A Neuronal Model of Predictive Coding Accounting for the Mismatch Negativity , 2012, The Journal of Neuroscience.

[10]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[11]  Richard A. Andersen,et al.  Visual self-motion perception during head turns , 1998, Nature Neuroscience.

[12]  R. Srinivasan,et al.  Predictive Coding Based on Efficient Motion Estimation , 1985, IEEE Trans. Commun..

[13]  Hiroshi Harashima,et al.  Motion compensation based on spatial transformations , 1994, IEEE Trans. Circuits Syst. Video Technol..

[14]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[15]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[16]  Naftali Tishby,et al.  Efficient representation as a design principle for neural coding and computation , 2006, 2006 IEEE International Symposium on Information Theory.

[17]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[18]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[19]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[20]  M. Bar Predictions in the brain : using our past to generate a future , 2011 .

[21]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[22]  Karl J. Friston,et al.  Behavioral / Systems / Cognitive Striatal Prediction Error Modulates Cortical Coupling , 2010 .

[23]  Alex K. Susemihl,et al.  Temporal Autoencoding Restricted Boltzmann Machine , 2012, ArXiv.

[24]  Martin P. Nawrot,et al.  Natural image sequences constrain dynamic receptive fields and imply a sparse code , 2013, Brain Research.

[25]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[26]  Sophie Denève,et al.  Bayesian Spiking Neurons I: Inference , 2008, Neural Computation.

[27]  Michael J. Berry,et al.  Predictive information in a sensory population , 2013, Proceedings of the National Academy of Sciences.

[28]  J. Atick,et al.  Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus , 1995 .

[29]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[30]  L. Osborne,et al.  Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements , 2015, The Journal of Neuroscience.

[31]  Jonathan D Victor,et al.  The statistics of local motion signals in naturalistic movies. , 2014, Journal of vision.

[32]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[33]  Angela Jianu,et al.  Schlieren and “focused” shadowgraphy visualization of the shape and wake of single air bubbles freely rising in quiescent water , 2007, J. Vis..

[34]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[35]  Michael J. Berry,et al.  Redundancy in the Population Code of the Retina , 2005, Neuron.

[36]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[37]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[38]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[39]  Bruno A. Olshausen,et al.  Learning Intermediate-Level Representations of Form and Motion from Natural Movies , 2012, Neural Computation.

[40]  Michael J. Berry,et al.  Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal , 2007, Neuron.

[41]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[42]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[43]  Christian K. Machens,et al.  Predictive Coding of Dynamical Variables in Balanced Spiking Networks , 2013, PLoS Comput. Biol..

[44]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[45]  Miriam Spering,et al.  Contextual effects on motion perception and smooth pursuit eye movements , 2008, Brain Research.

[46]  Saeed Saremi,et al.  Hierarchical model of natural images and the origin of scale invariance , 2013, Proceedings of the National Academy of Sciences.

[47]  Michael J. Berry,et al.  Detection and prediction of periodic patterns by the retina , 2007, Nature Neuroscience.

[48]  Gal Chechik,et al.  Information Bottleneck for Gaussian Variables , 2003, J. Mach. Learn. Res..

[49]  Caspar M. Schwiedrzik,et al.  Stimulus Predictability Reduces Responses in Primary Visual Cortex , 2010, The Journal of Neuroscience.

[50]  Michele Rucci,et al.  Decorrelation of retinal response to natural scenes by fixational eye movements , 2013, Proceedings of the National Academy of Sciences.

[51]  Stephen A. Baccus,et al.  Spatial Segregation of Adaptation and Predictive Sensitization in Retinal Ganglion Cells , 2013, Neuron.

[52]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[53]  J. Kelso,et al.  Fractal time and 1/ f spectra in dynamic images and human vision , 2001 .

[54]  Naftali Tishby,et al.  Past-future information bottleneck in dynamical systems. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[56]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[57]  Naftali Tishby,et al.  Predictability, Complexity, and Learning , 2000, Neural Computation.

[58]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[59]  Karl J. Friston,et al.  Predictive coding: an account of the mirror neuron system , 2007, Cognitive Processing.

[60]  W. Bialek,et al.  Statistical thermodynamics of natural images. , 2008, Physical review letters.

[61]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .